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Spinning electrons localized on a cubic lattice
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Examine ground state as a function of �

S=1/2
spins
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At large    ground state is a “quantum paramagnet” with 
spins locked in valence bond singlets

=
1⌅
2

⇥���⇥⇤
⌅
�

��� ⇤⇥
⌅⇤

�

Spinning electrons localized on a cubic lattice

Friday, January 11, 13



H =
�

�ij⇥

Jij
⌅Si · ⌅Sj

J

J/�

=
1⌅
2

⇥���⇥⇤
⌅
�

��� ⇤⇥
⌅⇤

Spinning electrons localized on a cubic lattice

Nearest-neighor spins are “entangled” with each other.
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Spinning electrons localized on a cubic lattice

For � ⇡ 1, the ground state has antiferromagnetic (“Néel”)
order, and the spins align in a checkerboard pattern.

There is a broken O(3) symmetry characterized by an

order parameter ~' ⇠ (�1)ix+i
y ~Si
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Pressure in TlCuCl3
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A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, 
Journal of the Physical Society of Japan, 73,  1446 (2004).
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TlCuCl3

An insulator whose spin susceptibility vanishes 
exponentially as the temperature T tends to zero.

Friday, January 11, 13



TlCuCl3

Quantum paramagnet at 
ambient pressure

Friday, January 11, 13



TlCuCl3

Neel order under pressure
A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, 
Journal of the Physical Society of Japan, 73,  1446 (2004).
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N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer 
and   H. Mutka, Phys. Rev. B 63 172414 (2001).

TlCuCl3 at ambient pressure
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Spin waves
(Goldstone bosons)

Friday, January 11, 13



��c

Excitation spectrum in the Néel phase
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Field theory for the quantum phase transition
in terms of a O(3) order parameter ~'

S =

Z
d3rd⌧

h
(@⌧')

2 + c2(rr ~')
2 + (�� �c)~'

2 + u
�
~'2

�2i

Description using Landau-Ginzburg field theory

Friday, January 11, 13



-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

��c

Excitation spectrum in the paramagnetic phase

⇥�

Spin S = 1
“triplon”

V (⇤�)
V (⇧⇥) = (�� �c)⇧⇥2 + u

�
⇧⇥2

⇥2

� >� c

Friday, January 11, 13



-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

��c

Excitation spectrum in the paramagnetic phase

⇥�

Spin S = 1
“triplon”

V (⇤�)
V (⇧⇥) = (�� �c)⇧⇥2 + u

�
⇧⇥2

⇥2

� >� c

Friday, January 11, 13



-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

��c

Excitation spectrum in the paramagnetic phase

⇥�

Spin S = 1
“triplon”

V (⇤�)
V (⇧⇥) = (�� �c)⇧⇥2 + u

�
⇧⇥2

⇥2

� >� c

Friday, January 11, 13



-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

��c

Excitation spectrum in the paramagnetic phase

⇥�

Spin S = 1
“triplon”

V (⇤�)
V (⇧⇥) = (�� �c)⇧⇥2 + u

�
⇧⇥2

⇥2

� >� c

Friday, January 11, 13



-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

��c

Excitation spectrum in the paramagnetic phase

⇥�

Spin S = 1
“triplon”

V (⇤�)
V (⇧⇥) = (�� �c)⇧⇥2 + u

�
⇧⇥2

⇥2

� >� c

Friday, January 11, 13



-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

-0.3

-0.2

-0.1

0.0

��c

⇥�

V (⇤�)

Excitation spectrum in the Néel phase
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and a longitudinal Higgs boson

Excitation spectrum in the Néel phase
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

TlCuCl3 with varying pressure

Observation of 3 � 2 low energy modes, emergence of new longi-
tudinal mode (the “Higgs boson”) in Néel phase, and vanishing of
Néel temperature at quantum critical point
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

Broken valence bond

(“triplon”) excitations of the

quantum paramagnet
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

Goldstone bosons

above the Néel state
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TlCuCl3 with varying pressure

S. Sachdev, 
arXiv:0901.4103

Longitudinal excitations–
Higgs boson at a

theoretically predicted energy
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Prediction of quantum field theory
Potential for ⇧⇥ fluctuations: V (⇧⇥) = (�� �c)⇧⇥2 + u

�
⇧⇥2

⇥2

Paramagnetic phase, � >� c

Expand about ⇧⇥ = 0:
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Yields 3 particles with energy gap ⇥
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Néel phase, � < �c
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energy gap ⇠
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• It is possible for the Higgs boson
to decay into pairs of Goldstone
bosons. In d = 3, this process is
(marginally) subdominant, and the
Higgs boson is well-defined.

• In d = 2 the decay into Gold-
stone bosons is dominant, and
there is no Higgs boson. Never-
theless, there is a Higgs “mode”
linked to a pole of response func-
tions in the lower-half of the com-
plex frequency plane.

S =

Z
ddrd⌧

h
(@⌧')

2 + c2(rr ~')
2 + (�� �c)~'

2 + u
�
~'2

�2i

A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

S. Sachdev, Phys. Rev. B 59, 14054 (1999).

W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004).

D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011).

D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012).

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

-0.3

-0.2

-0.1

0.0

⇥�

V (⇤�)

Friday, January 11, 13



S =

Z
ddrd⌧

h
(@⌧')

2 + c2(rr ~')
2 + (�� �c)~'

2 + u
�
~'2

�2i

A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

S. Sachdev, Phys. Rev. B 59, 14054 (1999).

W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004).

D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011).

D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012).

• It is possible for the Higgs boson
to decay into pairs of Goldstone
bosons. In d = 3, this process is
(marginally) subdominant, and the
Higgs boson is well-defined.

• In d = 2 the decay into Gold-
stone bosons is dominant, and
there is no Higgs boson. Never-
theless, there is a Higgs “mode”
linked to a pole of response func-
tions in the lower-half of the com-
plex frequency plane.

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

-0.3

-0.2

-0.1

0.0

⇥�

V (⇤�)

Friday, January 11, 13



!

D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012).
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where � is the particle gap at the complementary
point in the “paramagnetic” state.
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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Insulator (the vacuum) 
at large repulsion between bosons
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Excitations of the insulator:

Particles ⇠  † = '1 � i'2
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Excitations of the insulator:

Holes ⇠  = '1 + i'2
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Particles ⇠  † = '1 � i'2

Holes ⇠  = '1 + i'2

Density of particles = density of holes )
“Relativistic” field theory for ~':

Excitations of the insulator:

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Superfluid-insulator transition described by

~' with N = 2 components

h~'i 6= 0 h~'i = 0

��c
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.

hQ
0/
U

j/jc

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
0 0.03 0.06 0.09 0.12 0.15

j

Super!uidMott 
Insulator

a b

3

1

2

V0 = 8Er
j/jc = 2.2

k B
T/
U

1

2

3

V0 = 9Er
j/jc = 1.6

V0 = 10Er
j/jc = 1.2

Q0

0.11

0.13

0.15

0.17

0.12

0.14

0.16

0.18

0 400 800
0.12

0.14

0.16

0.18

Qmod (Hz)

Q0

Q0

Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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22n3 (Methods). Shown is the temperature response
rescaled with (1 2 j/jc)

2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.

LETTER RESEARCH

2 6 J U L Y 2 0 1 2 | V O L 4 8 7 | N A T U R E | 4 5 5

Macmillan Publishers Limited. All rights reserved©2012

Observation of Higgs mode across the 
superfluid-insulator transition of ultracold 
atoms in a 2-dimensional optical lattice:
Response to modulation of lattice depth 
scales as expected from the LHP pole

Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schaub, Christian Gross, 
Eugene Demler, Stefan Kuhr, and Immanuel Bloch, Nature 487, 454 (2012).

Friday, January 11, 13



1. Higgs boson in a 3-dimensional  
            antiferromagnet
      
2. Higgs “pole” near the superfluid-insulator
            transition in 2 dimensions 

3. Quantum criticality and 
            conformal field theories

4. Holography and the quasi-normal modes of  
            black-hole horizons

Outline

Friday, January 11, 13



1. Higgs boson in a 3-dimensional  
            antiferromagnet
      
2. Higgs “pole” near the superfluid-insulator
            transition in 2 dimensions 

3. Quantum criticality and 
            conformal field theories

4. Holography and the quasi-normal modes of  
            black-hole horizons

Outline

Friday, January 11, 13



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

S =

Z
d2rd⌧

h
(@⌧')

2 + c2(rr ~')
2 + (�� �c)~'

2 + u
�
~'2

�2i

Superfluid-insulator transition described by

~' with N = 2 components

h~'i 6= 0 h~'i = 0

��c

Friday, January 11, 13



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

S =

Z
d2rd⌧

h
(@⌧')

2 + c2(rr ~')
2 + (�� �c)~'

2 + u
�
~'2

�2i

h~'i 6= 0 h~'i = 0

��c

Friday, January 11, 13



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

S =

Z
d2rd⌧

h
(@⌧')

2 + c2(rr ~')
2 + (�� �c)~'

2 + u
�
~'2

�2i

h~'i 6= 0 h~'i = 0

��c

A conformal field theory in 2+1 
spacetime dimensions: CFT3
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Quantum critical dynamics 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible local equilibration time, ⌧eq

⌧eq = C ~
kBT

where C is a universal constant.

Response functions are characterized by poles in LHP
with ! ⇠ kBT/~

(analogs of Higgs pole)
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M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

� =

Q2

h
⇥ [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oe�cients not determined
by collision rate, but by

universal constants of nature

Conductivity

Quantum critical dynamics 
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Transport co-oe�cients not determined
by collision rate, but by

universal constants of nature

Momentum transport
�

s
⇥ viscosity

entropy density

=
�

kB
� [Universal constant O(1) ]
P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett.  94, 11601 (2005)

Quantum critical dynamics 
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Describe charge transport using Boltzmann theory of in-

teracting bosons:

dv

dt
+

v

⇥c
= F.

This gives a frequency (⇤) dependent conductivity

�(⇤) =
�0

1� i⇤ ⇥c

where ⇥c ⇠ ~/(kBT ) is the time between boson collisions.

Also, we have �(⇤ ! 1) = �1, associated with the den-

sity of states for particle-hole creation (the “optical con-

ductivity”) in the CFT3.

Quantum critical dynamics 
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Boltzmann theory of bosons

�0

�1

!

1/�c

Re[�(!)]
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Quantum
critical

TKT
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So far, we have described the quantum critical point using

the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which
described by a (mirror/e.m.) “dual” CFT3 with an emer-
gent U(1) gauge field. Their T > 0 dynamics can also be
described by a Boltzmann equation:

Conductivity = Resistivity of vortices

g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT
⇥�⇤ �= 0 ⇥�⇤ = 0
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However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which
described by a (mirror/e.m.) “dual” CFT3 with an emer-
gent U(1) gauge field. Their T > 0 dynamics can also be
described by a Boltzmann equation:

Conductivity = Resistivity of vortices

M.P.A. Fisher, Physical Review Letters 65, 923 (1990)
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Boltzmann theory of bosons
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Boltzmann theory of vortices

�11/�cv

1/�0v

Re[�(!)]

!
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Boltzmann theory of bosons
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

; ⌃ ! a universal function� =
Q2

h
�

✓
~⇥
kBT

◆

O(N)

O(1/N)

Re[�(!)]
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

; ⌃ ! a universal function� =
Q2

h
�

✓
~⇥
kBT

◆

O(N)

O(1/N)

Re[�(!)]

Small ! and vector large N
limits do not commute

at T > 0.
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

; ⌃ ! a universal function� =
Q2

h
�

✓
~⇥
kBT

◆

O(N)

O(1/N)

Re[�(!)]

Needed: 
an accurate theory 

of quantum critical dynamics
for small N
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Field theories in d + 1 spacetime dimensions are
characterized by couplings g which obey the renor-
malization group equation

u
dg

du
= �(g)

where u is the energy scale. The RG equation is
local in energy scale, i.e. the RHS does not depend
upon u.
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u

J. McGreevy, arXiv0909.0518
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Key idea: ) Implement r as an extra dimen-

sion, and map to a local theory in d + 2 spacetime

dimensions.

r xi
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For a relativistic CFT in d spatial dimensions, the

metric in the holographic space is uniquely fixed

by demanding the following scale transformaion

(i = 1 . . . d)

xi ! ⇣xi , t ! ⇣t , ds ! ds

This gives the unique metric

ds

2
=

1

r

2

�
�dt

2
+ dr

2
+ dx

2
i

�

Reparametrization invariance in r has been used

to the prefactor of dx

2
i equal to 1/r

2
. This fixes

r ! ⇣r under the scale transformation. This is

the metric of the space AdSd+2.
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zr
This emergent spacetime is a solution of Einstein gravity 

with a negative cosmological constant

AdS4
R

2,1

Minkowski

CFT3

AdS/CFT correspondence

SE =

Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆�

xi
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AdS/CFT correspondence
1

For every primary operator O(x) in the CFT, there is

a corresponding field �(x, r) in the bulk (gravitational)

theory. For a scalar operator O(x) of dimension �, the

correlators of the boundary and bulk theories are related

by

hO(x1) . . . O(xn)iCFT =

Zn
lim

r!0
r��
1 . . . r��

n h�(x1, r1) . . .�(xn, rn)ibulk

where the “wave function renormalization” factor Z =

(2��D).
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AdS/CFT correspondence 2

For a U(1) conserved current Jµ of the CFT, the corre-

sponding bulk operator is a U(1) gauge field Aµ. With a

Maxwell action for the gauge field

SM =

1

4g2M

Z
dD+1x

p
gFabF

ab

we have the bulk-boundary correspondence

hJµ(x1) . . . J⌫(xn)iCFT =

(Zg�2
M )

n
lim

r!0
r2�D
1 . . . r2�D

n hAµ(x1, r1) . . . A⌫(xn, rn)ibulk

with Z = D � 2.
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AdS/CFT correspondence
3

A similar analysis can be applied to the stress-energy

tensor of the CFT, Tµ⌫ . Its conjugate field must be a spin-

2 field which is invariant under gauge transformations: it

is natural to identify this with the change in metric of the

bulk theory. We write �gµ⌫ = (L2/r2)�µ⌫ , and then the

bulk-boundary correspondence is now given by

hTµ⌫(x1) . . . T⇢�(xn)iCFT =

✓
ZL2

2

◆n

lim

r!0
r�D
1 . . . r�D

n h�µ⌫(x1, r1) . . .�⇢�(xn, rn)ibulk ,

with Z = D.

Friday, January 11, 13



AdS/CFT correspondence
4

So the minimal bulk theory for a CFT with a conserved

U(1) current is the Einstein-Maxwell theory with a cosmo-

logical constant

S =

1

4g2M

Z
d4x

p
gFabF

ab

+

Z
d4x

p
g


� 1

22

✓
R+

6

L2

◆�
.

This action is characterized by two dimensionless parame-

ters: gM and L2/2
, which are related to the conductivity

�(!) = K and the central charge of the CFT.
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AdS/CFT correspondence

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, arXiv:1210.5247

5

This minimal action also fixes multi-point correlators of

the CFT: however these do not have the most general form

allowed for a CFT. To fix these, we have to allow for higher-

gradient terms in the bulk action. For the conductivity, it

turns out that only a single 4 gradient term contributes

Sbulk =

1

g2M

Z
d4x

p
g


1

4

FabF
ab

+ �L2CabcdF
abF cd

�

+

Z
d4x

p
g


� 1

22

✓
R+

6

L2

◆�
,

where Cabcd is the Weyl tensor. The parameter � can be

related to 3-point correlators of Jµ and Tµ⌫ . Both bound-

ary and bulk methods show that |�|  1/12, and the bound

is saturated by free fields.
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
solutions of Einstein 

gravity which 
describe non-zero 

temperatures

r

S =

Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆�
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
solutions of Einstein 

gravity which 
describe non-zero 

temperatures

ds

2 =

✓
L

r

◆2 
dr

2

f(r)
� f(r)dt2 + dx

2 + dy

2

�

with f(r) = 1� (r/R)3

r
A 2+1

dimensional

system at its

quantum

critical point:

kBT =

3~
4⇡R

.
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

ds

2 =

✓
L

r

◆2 
dr

2

f(r)
� f(r)dt2 + dx

2 + dy

2

�

with f(r) = 1� (r/R)3

r
A 2+1

dimensional

system at its

quantum

critical point:

kBT =

3~
4⇡R

.

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system
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Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Beckenstein-Hawking 
entropy of black brane 

= entropy of CFT3

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

r
A 2+1

dimensional

system at its

quantum

critical point:

kBT =

3~
4⇡R

.
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Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Friction of quantum 
criticality = waves 

falling into black brane 

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

A 2+1

dimensional

system at its

quantum

critical point:

kBT =

3~
4⇡R

.

D. T. Son
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�/T

�

AdS4 theory of electrical transport in a strongly 
interacting CFT3 for T > 0

Conductivity is

independent of ⇥/T
for � = 0.

1

g2M

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,
Phys. Rev. D 75, 085020 (2007).
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�/T

�

AdS4 theory of electrical transport in a strongly 
interacting CFT3 for T > 0

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,
Phys. Rev. D 75, 085020 (2007).

Consequence of self-duality of Maxwell theory in 3+1 dimensions

Conductivity is

independent of ⇥/T
for � = 0.

1

g2M
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of quantum criticality

�(!)

�(1)

Friday, January 11, 13



h

Q2
�

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

⇥

4�T

� = 0

� =
1

12

� = � 1

12 • The � > 0 result has similarities to

the quantum-Boltzmann result for

transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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�(1)

AdS4 theory of quantum criticality
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12
• The � < 0 result can be interpreted

as the transport of vortex-like

excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of quantum criticality
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⇥

4�T

� = 0

� =
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� = � 1

12

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The � = 0 case is the exact result for the large N limit

of SU(N) gauge theory with N = 8 supersymmetry (the

ABJM model). The ⇥-independence is a consequence of

self-duality under particle-vortex duality (S-duality).

�(!)

�(1)

AdS4 theory of quantum criticality

Friday, January 11, 13



h

Q2
�

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

⇥

4�T

� = 0

� =
1

12

� = � 1

12

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• Stability constraints on the e�ective
theory (|�| < 1/12) allow only a lim-
ited ⇥-dependence in the conductivity

�(!)

�(1)

AdS4 theory of quantum criticality
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(a)<{�(w; � = 1/12)} (b)<{�̂(w; � = 1/12)}

(c)<{�(w; � = �1/12)} (d)<{�̂(w; � = �1/12)}

FIG. 4. Conductivity � and its S-dual �̂ = 1/� in the LHP, w00 = =w  0, for |�| = 1/12. The zeros
of �(w; �) are the poles of �̂(w; �). We further note the qualitative correspondence between the poles of
�(w; �) and the zeros of �̂(w;��).

low-frequency behavior is dictated by a Drude pole, located closest to the origin. The numerical

solution also shows the presence of satellite poles, the two dominant ones being shown. These

are symmetrically distributed about the =w axis as required by time-reversal, and are essential

to capture the behavior of � beyond the small frequency limit. In contrast, the conductivity at

� = �1/12 in Fig. 4(c) shows a minimum at w = 0 on the real axis, see also Fig. 7(b) for a plot

restricted to real frequencies. The corresponding pole structure shows no poles on the imaginary

axis, in particular no Drude pole. The conductivity at � = �1/12 is said to be vortex-like because

it can be put in correspondence with the conductivity of the CFT S-dual to the one with � = 1/12,

as we now explain.

B. S-duality and conductivity zeros

Great insight into the behavior of the conductivity can be gained by means of S-duality, a

generalization of the familiar particle-vortex duality of the O(2) model. S-duality on the boundary

14

AdS4 theory of quantum criticality

W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)

Poles in LHP
of conductivity
at ! ⇠ kBT/~ –

analog of Higgs mode
in two dimensions –
quasinormal modes

of black brane
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FIG. 4. Conductivity � and its S-dual �̂ = 1/� in the LHP, w00 = =w  0, for |�| = 1/12. The zeros
of �(w; �) are the poles of �̂(w; �). We further note the qualitative correspondence between the poles of
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low-frequency behavior is dictated by a Drude pole, located closest to the origin. The numerical

solution also shows the presence of satellite poles, the two dominant ones being shown. These

are symmetrically distributed about the =w axis as required by time-reversal, and are essential

to capture the behavior of � beyond the small frequency limit. In contrast, the conductivity at

� = �1/12 in Fig. 4(c) shows a minimum at w = 0 on the real axis, see also Fig. 7(b) for a plot

restricted to real frequencies. The corresponding pole structure shows no poles on the imaginary

axis, in particular no Drude pole. The conductivity at � = �1/12 is said to be vortex-like because

it can be put in correspondence with the conductivity of the CFT S-dual to the one with � = 1/12,

as we now explain.

B. S-duality and conductivity zeros

Great insight into the behavior of the conductivity can be gained by means of S-duality, a

generalization of the familiar particle-vortex duality of the O(2) model. S-duality on the boundary

14
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W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)

Poles in LHP
of resistivity —

quasinormal modes
of S-dual theory
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The holographic solutions for the conductivity satisfy two

sum rules, valid for all CFT3s. (W. Witzack-Krempa and

S. Sachdev, Phys. Rev. B 86, 235115 (2012))

Z 1

0
d!Re [�(!)� �(1)] = 0

Z 1

0
d!Re


1

�(!)
� 1

�(1)

�
= 0

The second rule follows from the existence of a EM-dual

CFT3.

Boltzmann theory chooses a “particle” basis: this satis-

fies only one sum rule but not the other.

Holographic theory satisfies both sum rules.

AdS4 theory of quantum criticality
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Gapped quantum matter    
          Z2 Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Strange metals, Bose metals

“Complex entangled” states of 
quantum matter, 

not adiabatically connected to independent particle states

S. Sachdev, 100th anniversary Solvay conference (2011), arXiv:1203.4565
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