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Spinning electrons localized on a cubic lattice

H=Y J;S;-S;
(i5)

Examine ground state as a function of )\
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Spinning electrons localized on a cubic lattice

H=Y J;S;-S;

@ - ;5 (1))

At large )\ ground state 1s a “quantum paramagnet” with
spins locked 1n valence bond singlets

Friday, January 11, 13



Spinning electrons localized on a cubic lattice

H=Y J;S;-S;

> - ;5 (1))

Nearest-neighor spins are “entangled” with each other.
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Spinning electrons localized on a cubic lattice

H=Y J;S;-S;
(i)

For A =~ 1, the ground state has antiferromagnetic (“Néel”)
order, and the spins align in a checkerboard pattern.

There is a broken O(3) symmetry characterized by an
order parameter G ~ (—1)%=T G,
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= Pressure in TICuCls

A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka,
Journal of the Physical Society of Japan, 73, 1446 (2004).




TICuCl,

> An insulator whose spin susceptibility vanishes
exponentially as the temperature T tends to zero.
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TICuCl,

Quantum paramagnet at
ambient pressure




TICuCl,

A

X’ Neel order under pressure

A. Oosawa, K. KakuFai,T. Osakabe, M. Nakamura, M. Takeda, and H.Tanaka,
Journal of the Physical Society of Japan, 73, 1446 (2004).
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Excitation spectrum in the paramagnetic phase
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Excitation spectrum in the paramagnetic phase
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TICuCl; at ambient pressure
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FIG. 1. Measured neutron profiles in the a*c™ plane of TICuCl;
for i=(1.35.0,0). ii=(0.0.3.15) [rlu]. The spectrum at T=15K

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Giidel, K. Kramer
and H. Mutka, Phys. Rev. B 63 172414 (2001).
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Excitation spectrum in the Néel phase
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Description using Landau-Ginzburg field theory
=
= ==

Ac

Field theory for the quantum phase transition
in terms of a O(3) order parameter ¢

S = /dSTdT {(87-@)2 + CQ(VT@’)Z + (N — )\c)@? + u (932)2}
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Excitation spectrum in the paramagnetic phase
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Excitation spectrum in the paramagnetic phase
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Excitation spectrum in the Néel phase

Spin waves (Goldstone boson)
and a longitudinal Higgs boson
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Excitation spectrum in the Néel phase

Spin waves (Goldstone boson)
and a longitudinal Higgs boson
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Excitation spectrum in the Néel phase

Spin waves (Goldstone boson)
and a longitudinal Higgs boson
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TICuCl; with varying pressure
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Observation of 3 — 2 low energy modes, emergence of new longi-
tudinal mode (the “Higgs boson”) in Néel phase, and vanishing of
Neel temperature at quantum critical point

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TICuCl; with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TICuCl; with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TICuCl; with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Excitations of TICuCl; with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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Prediction of quantum field theory

Paramagnetic phase, A >\ ..

Expand about ¢ = 0:

V(@) = (A= Ac)#”

Yields 3 particles with energy gap ~ \/ (A — A¢)
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Prediction of quantum field theory

Potential for ¢ fluctuations: V(@) = (A — A\.)@* + u (52)2
Paramagnetic phase, A >\ ..

Expand about ¢ = 0: V(@) N

V(@) ~ (A= A7 &

Yields 3 particles with energy gap ~ /(A — A.)

Néel phase, A < A,

Expand ¢ = (0,0,v/(Ac — A\)/(2u) ) + ¢

V(SB) ~ 2()‘0 o )‘)SO%Z

Yields 2 gapless spin waves and one Higgs particle with
energy gap ~ v/2(Ac — \)
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Prediction of quantum field theory

Potential for ¢ fluctuations: V(@) = (A — A\.)@* + u (52)2
Paramagnetic phase, A >\ ..

Expand about ¢ = 0: V(@) N

V(@) ~ (A= A7 &

Yields 3 particles with energy gap ~ /(A — A.)

Néel phase, A < A,

Expand ¢ = (0,0,v/(Ac — A\)/(2u) ) + ¢

V(SB) ~ 2()‘0 o )‘)SO%Z

Yields 2 gapless spin waves and one Higgs particle with

energy gap ~ ﬁ)\c — )
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Excitations of TICuCl; with varying pressure

1.2

Energy [meV]
O O
o) [0 —

o
~

o
N

o
o

0.5 1 1.5 2 2.5 3
Pressure [kbar]

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Friday, January 11, 13



Excitations of TICuCl; with varying pressure

1.2

Energy [meV]
O O
o) [0 —

o
~

o
N

o
o

0.5 1 1.5 2 2.5 3
Pressure [kbar]

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Friday, January 11, 13



Excitations of TICuCl; with varying pressure
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Prediction of quantum field theory
Energy of Higgs boson NG

Energy of triplon
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S. Sachdey, arXiv:0901.4103
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S — / d%rdr [(8790)2 + (V@) + (A= A)@ +“(952)2}

e [t is possible for the Higgs boson
to decay into pairs of Goldstone
bosons. In d = 3, this process is
(marginally) subdominant, and the
Higes boson is well-defined.

A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

S. Sachdev, Phys. Rev. B 59, 14054 (1999).

W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004).

D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011).
D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012).
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S — / drdr {(8790)2 + (V@) + (A= A) P +“(952)2}

e [t is possible for the Higgs boson
to decay into pairs of Goldstone
bosons. In d = 3, this process is
(marginally) subdominant, and the
Higes boson is well-defined.

e In d = 2 the decay into Gold-
stone bosons is dominant, and
there is no Higgs boson. Never-
theless, there is a Higgs “mode”
linked to a pole of response func-
tions in the lower-half of the com-

plex frequency plane.

A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).
S. Sachdev, Phys. Rev. B 59, 14054 (1999).

W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004).

D. Podolsky, A. Auerbach, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011).
D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012).
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Higgs pole in d = 2 at

° ° Wpole 4 1 (16(4+\/§10g(32\/§))

= —q — — 5

A m™ N

T

, 1
+ 2.46531203396 z) + O (m)

where A is the particle gap at the complementary
point in the “paramagnetic” state.

D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012).
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Superfluid-insulator transition

a Superflud state

Ultracold ®“Rb

atoms - bosons

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002).
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Insulator (the vacuum)
at large repulsion between bosons
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Excitations of the insulator:

Particles ~ T = ¢; — o9
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Excitations of the insulator:

Holes ~ v = 1 + 19
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Excitations of the insulator:

Particles ~ wT = 1 — 12

Holes ~ 1 = 1 4 19

Density of particles = density of holes =
“Relativistic” field theory for :

S = /d2rd7' {(({Lgp)Q + CQ(VT.QB)Q + (A — )\c)952 + u (952)2]

M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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S = /dQTdT {(8790)2 + CQ(VT@’)2 + (A — )\0)952 + u (952)2}

Superfluid-insulator transition described by
¢ with N = 2 components

(@) # 0 (@) =0

Superfluid Insulator
o
Ao A
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Observation of Higgs mode across the
superfluid-insulator transition of ultracold
atoms in a 2-dimensional optical lattice:
Response to modulation of lattice depth
scales as expected from the LHP pole
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Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schaub, Christian Gross,

Eugene Demler, Stefan Kuhr; and Immanuel Bloch, Nature 487,454 (2012).
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Observation of . . . . .
Higgs mode o003 Wl b ]
across the 0.03- _ 0,02 I Y-
superfluid- L5 001 | |
insulator § ook 9 _
transition of g | 0 02 04 06 0.8 |
ultracold atoms in | = oil Vmod/ _
a 2-dimensional =

optical lattice: _ 3 _
Response to | © '
modulation of 0 0.2 0.4 0.6 0.8 1'
lattice depth VooV

scales as expected Figure 4 | Scaling of the low-frequency response. The low-frequency
from the LHP | repanein b sporid g shons ng compublewih
pole rescaled with (1 — j/jc)2 for Vi, = 10E, (grey), 9.5E, (black), 9E, (green), 8.5E,

(blue) and 8E, (red) as a function of the modulation frequency. The black line is
a fit of the form av® with a fitted exponent b = 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.

D. Podolsky and S. Sachdev, Phy. Rev. B 86, 054508 (2012)

Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schaub, Christian Gross,
Eugene Demler, Stefan Kuhr, and Immanuel Bloch, Nature 487,454 (2012).

Friday, January 11, 13



Excitations of TICuCl; with varying pressure
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer,
Desmond McMorrow, Karl Kramer, Hans-Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)
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S = /dQTdT {(8790)2 + CQ(VT@’)2 + (A — )\0)952 + u (952)2}

Superfluid-insulator transition described by
¢ with N = 2 components

(@) # 0 (@) =0

Superfluid Insulator
o
Ao A
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o = /de'“dT [(8790)2 +A(Vo@)? + (A= Ae)F” +u (¢

(p) # 0 () =0
Superfluid Insulator
I S

Ae A




(p) # 0 (B) =0

Superfluid Insulator
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Classical vortices and
Goldstone oscillations

e Quantum 7
critical

Friday, January 11, 13



Classical Boltzmann gas
of particles and holes

M. Quantum y
\ critical ,
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CFT3 at 7>0

Quantum
\ critical ,
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Quantum critical dynamics

Quantum ‘“nearly perfect fluid”
with shortest possible local equilibration time, 7

Teq = CkBT

where C is a universal constant.
Response functions are characterized by poles in LHP

with w ~ ]{JBT/h
(analogs of Higgs pole)

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).
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Quantum critical dynamics

Transport co-oefficients not determined
by collision rate, but by
universal constants of nature

Conductivity

2

0=~ X |Universal constant O(1) |

(Q is the “charge” of one boson)

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
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Quantum critical dynamics

Transport co-oefficients not determined
by collision rate, but by
universal constants of nature

Momentum transport
V1SCOS1ty

- entropy density

h
— k_ X |Universal constant O(1) |
B

P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005)
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Quantum critical dynamics

Describe charge transport using Boltzmann theory of in-

teracting bosons:

dv v
| = F
dt 7.

This gives a frequency (w) dependent conductivity

go

U(w) B l—rwT

where 7. ~ h/(kgT) is the time between boson collisions.
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Quantum critical dynamics

Describe charge transport using Boltzmann theory of in-

teracting bosons:

dv v
| = F
dt 7.

This gives a frequency (w) dependent conductivity

go

U(w) B l—rwT

where 7. ~ h/(kgT) is the time between boson collisions.

Also, we have o(w — 00) = 0, associated with the den-

sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFTS3.
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Boltzmann theory of bosons




So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.

(v) # 0 (1)) = 0

Superfluid Insulator

A E
Jdc g
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However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

(¥) # 0 / (1)) = 0

Superfluid Insulator

A E
Jdc g
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However, we could equally well describe the conductivity
using the excitations of the superfluid, which are vortices.

These are quantum particles (in 241 dimensions) which
described by a (mirror/e.m.) “dual” CFT3 with an emer-
gent U(1) gauge field. Their T > 0 dynamics can also be
described by a Boltzmann equation:

Conductivity = Resistivity of vortices

() # 0 () =0

Superfluid Insulator

o>
. g

M.P.A. Fisher, Physical Review Letters 65, 923 (1990)
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Boltzmann theory of bosons




Boltzmann theory of vortices

Relo(w)]

«—1/7.

1/0’(}0
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Boltzmann theory of bosons




Vector large N expansion for CFT 3

2 huw . .
g = —Y > — a universal function

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I

Friday, January 11, 13



Vector large N expansion for CFT 3

2
o Q_ ( i ) > — a universal function

'Small w and vector large N
limits do not commute

at 1" > 0.

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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Vector large N expansion for CFT 3

2 huw . .
g = —Y > — a universal function

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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Vector large N expansion for CFT 3

2 huw . .
g = —Y > — a universal function

Needed:
an accurate theory

of quantum critical dynamics
for small N

1 hw

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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|. Higgs boson in a 3-dimensional

2. Higgs “pole” near the superfluid-insulator

antiferromagnet

transition in 2 dimensions

3. Quantum criticality and

conformal field theories

\

black-hole horizons
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Field theories in d + 1 spacetime dimensions are
characterized by couplings g which obey the renor-
malization group equation

dg
U@ = B(9)

where u is the energy scale. The RG equation is

local in energy scale, i.e. the RHS does not depend

upon u.
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Lg

V' <

Key idea: = Implement r as an extra dimen-
sion, and map to a local theory in d + 2 spacetime
dimensions.
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For a relativistic CF'T in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion

(i=1...d)

x;, > Cxr; , t—( , ds—ds

Friday, January 11, 13



For a relativistic CF'T in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion

(1=1...d)
x;, > Cxr; , t—( , ds—ds

This gives the unique metric

ds® = :2 (—dt* + dr® + dz7)

Reparametrization invariance in r has been used

to the prefactor of dz? equal to 1/r*. This fixes
r — (r under the scale transformation. This is
the metric of the space AdS 1.
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AdS/CFET correspondence

AdSy

RZ 1
Minkowski

<X,

«— CFT3

| A

This emergent spacetime is a solution of Einstein gravity
with a negative cosmological constant

5o (")
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AdS/CFET correspondence

For every primary operator O(x) in the CF'T, there is
a corresponding field ¢(a,r) in the bulk (gravitational)
theory. For a scalar operator O(x) of dimension A, the
correlators of the boundary and bulk theories are related

by

O(x1) ... O(xn)) opr =

Z" }1_1)1(1) rl_A . r;A (@(x1,71) - O( Ty n) ) i

where the “wave function renormalization” factor 2 =

(2A — D).
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AdS/CFET correspondence

For a U(1) conserved current J, of the CF'T, the corre-
sponding bulk operator is a U(1) gauge field A,. With a
Maxwell action for the gauge field

we have the bulk-boundary correspondence

<<],u(331) e JV(LE”»CFT a

(Zg;f)" }1_{1(1) r%_D . .ri_D (A (x1,71) ... Ay, Tn)>bu1k

with 7/ =D — 2.
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AdS/CFET correspondence

A similar analysis can be applied to the stress-energy
tensor of the CFT, T),,. Its conjugate field must be a spin-
2 field which is invariant under gauge transformations: it
is natural to identify this with the change in metric of the
bulk theory. We write 0g,,, = (L?/r?)x v, and then the
bulk-boundary correspondence is now given by

(T (1) . Toor (%)) ooy =

ZLP\" . -
( ) hm?“lD...TnD<Xuy(mlarl)---Xpa(mnvrn»bulk?

/{2 r—0

with Z = D.
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AdS/CFET correspondence

So the minimal bulk theory for a CFT with a conserved
U(1) current is the Einstein-Mazwell theory with a cosmo-
logical constant

This action is characterized by two dimensionless parame-
ters: gy and L?/k?*, which are related to the conductivity

o(w) = K and the central charge of the CFT.
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AdS/CFET correspondence

This minimal action also fixes multi-point correlators ot
the CFT: however these do not have the most general form
allowed for a CF'T. To fix these, we have to allow for higher-
ogradient terms in the bulk action. For the conductivity, it
turns out that only a single 4 gradient term contributes

where Cgpeq 18 the Weyl tensor. The parameter v can be
related to 3-point correlators of J,, and 7),,. Both bound-
ary and bulk methods show that |v| < 1/12, and the bound
is saturated by free fields.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, arXiv:1210.5247
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AdS/CFT correspondence at non-zero temperatures

AdSs-Schwarzschild black-brane

y e—

There is a family of
solutions of Einstein

gravity which -6 >

describe non-zero
temperatures
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AdS/CFT correspondence at non-zero temperatures

AdSs-Schwarzschild black-brane

A 241
dimensional
system at 1ts
quantum
critical point:

3h
T = ——.
K 41 R

There is a family of
solutions of Einstein

gravity which
describe non-zero
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AdS/CFT correspondence at non-zero temperatures

AdSs-Schwarzschild black-brane

y e—

A 241
dimensional
system at 1ts

quantum
critical point:

3h

T = ——.
K 41 R

Black-brane at
temperature of
2+1 dimensional
quantum critical
system
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AdS/CFT correspondence at non-zero temperatures

AdSs-Schwarzschild black-brane

y e—

A 241
dimensional
system at 1ts

quantum

critical point:

3h
T = ——.
K 41 R

Black-brane at Fom s e A A A e e e -
temperature of : Beckenstein-Hawking

2+1 dimensional : entropy of black brane

quanégt/zf;ecni;ztzcal = entropy of CFT3
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AdS/CFT correspondence at non-zero temperatures

AdSs-Schwarzschild black-brane

A 241
dimensional
system at 1ts

quantum
critical point:

3h
T —
K ATR

Black-brane at Fom s e A A A e e e -
temperature of : Friction of quantum :

2+1 dimensional i criticality = waves

t tical -
quanSqu; ecnl;l o fallmg into black brane :
y IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 1 D. T. Son
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AdS4 theory of electrical transport in a strongly
interacting CFT3 for T > 0

S| —

Conductivity is

independent of w/T
for v = 0.

>
w/T
C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,
Phys. Rev. D 75, 085020 (2007).
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AdS4 theory of electrical transport in a strongly
interacting CFT3 for T > 0

S| —

Conductivity is

independent of w/T
for v = 0.

Consequence of self-duality of Maxwell theory in 3+1 dimensions
>

w/T
C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,
Phys. Rev. D 75, 085020 (2007).
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AdS4 theory of quantum criticality

% W
OO : : : * ‘ * 1 1 ! 1 x x x 1 1 1
0.0 0.5 1.0 1.5 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of quantum criticality

OO | | ‘ | | | ‘ ‘ | | w | | | |

e The v > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

W
0.0 0.5 1.0 15  AxT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of quantum criticality

1
|y = —
o(w) 7 12
o(00)
1.0 1=
e The v < 0 result can be interpreted
0.5 - as the transport of vortex-like
* excltations
* W
o0 .
0.0 0.5 1.0 15 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of quantum criticality

1.5 - 1
=
olw) T 12
0(0)
1.0 y =4
0.5 - I'he v = 0 case is the exact result for the large N limit
: of SU(N) gauge theory with N' = 8 supersymmetry (the
ABJM model). The w-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
0.0 7 ‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘ | ‘ W
00 0.5 1.0 1.5 AxT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Friday, January 11, 13



AdS4 theory of quantum criticality

e Stability constraints on the effective
theory (|v| < 1/12) allow only a lim-
ited w-dependence in the conductivity

0.0 W
0.0 0.5 1.0 15 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of quantum criticality

Poles in LHP
of conductivity W .]5 l| W ,]5 ¢'|
athkBT/h— o | L0

analog of Higgs mode
in two dimensions —

quasinormal modes
of black brane

_al
“10 T
05

' HH"““‘mlé*’;—l.l]n
1.0

(c)R{o(w;y = —1/12)} (d)R{o (w;y = -1/12)}

W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)
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AdS4 theory of quantum criticality

Poles in LHP

of resistivity — o
quasinormal modes
of S-dual theory

e ra T ra
-\-""\-.._\_ ._."" " -\"‘--\.__\_ ._.""
ey l,..’ =1.0 — J‘-__, -1.0

-+

1.0 1.0

(c)R{o(w;y = —1/12)} (d)R{o (w;y = -1/12)}

W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)
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AdS4 theory of quantum criticality

The holographic solutions for the conductivity satisfy two
sum rules, valid for all CFT3s. (W. Witzack-Krempa and

S. Sachdev, Phys. Rev. B 86, 235115 (2012))

The second rule follows from the existence of a EM-dual
CFT3.

Boltzmann theory chooses a “particle” basis: this satis-
fies only one sum rule but not the other.

Holographic theory satisfies both sum rules.
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Traditional CMT

@ Identify quasiparticles and
their dispersions
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Traditional CMT
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@ Compute scattering
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quasiparticles (or of
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Traditional CMT Holography and black-branes

@ Start with strongly
interacting CFT without
particle- or wave-like
excitations

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures
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Traditional CMT
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Traditional CMT

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Holography and black-branes

@ Start with strongly
interacting CFT without
particle- or wave-like
excitations

@ Compute OPE co-efficients
of operators of the CFT

@ Relate OPE co-efficients to
couplings of an effective
graviational theory on AdS

@ Solve Einsten-Maxwell
equations. Dynamics of quasi-
normal modes of black
branes.
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“Complex entangled” states of
quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
Z» Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals, Bose metals

S.Sachdey, 100th anniversary Solvay conference (201 I), arXiv:1203.4565
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“Complex entangled” states of
quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
Z» Spin liquids, quantum Hall states

Important insights
from holography
Compressible quantum matter

Strange metals, Bose metals

Conformal quantum matter
Graphene, ultracold atoms,

S.Sachdey, 100th anniversary Solvay conference (201 I), arXiv:1203.4565
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Conclusions

Conformal quantum matter

Q@ New insights and solvable models for diffusion and
transport of strongly interacting systems near quantum critical
points
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Conclusions

Conformal quantum matter

Q@ New insights and solvable models for diffusion and
transport of strongly interacting systems near quantum critical
points

@ The description is far removed from, and complementary
to, that of the quantum Boltzmann equation which builds on
the quasiparticle/vortex picture.

@ Good prospects for experimental tests of frequency-
dependent, non-linear, and non-equilibrium transport
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