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Two main algorithms:

variational minimization of energy 

→ approximate ground state as TNS 

apply local operators → simulate time evolution
imaginary time → ground state
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BASIC PROBLEMS

find ground states 

→ variational search

→ imaginary time evolution

time-dependence → real time evolution

typically faster and 
more precise

preserves 
symmetries

will work for 
short times

HAMILTONIAN

produce an 
ansatz for the 

state
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FOR MIXED STATES...
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MIXED STATES

Same kind of 
ansatz for 
operators
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•MPO = Matrix Product Operator

Routinely used for 
andH U(t)

Verstraete et al., PRL 2004
Pirvu et al., NJP 2010
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MIXED STATES
•MPDO = Matrix Product Density Operator

Use for density operators
need some 
properties

tr� = 1� = �† � � 0
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can we impose them locally?
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MIXED STATES
•MPDO = Matrix Product Density Operator

tr� = 1� = �† � � 0

� =
�

i1,j1...iN ,jN

tr(M i1j1
1 M i2j2

2 . . .M iN jN

N )|i1 . . . iN ��j1 . . . jN |

can we impose them locally?

need some 
properties

�S = trA|�SA���SA|

purification

in a way

see Werner et al., arXiv:1412.5746
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MIXED STATES
•MPO = Matrix Product Operator

Similar problems can be attacked

imaginary time evolution

unitary �(t) = U(t)�(0)U(t)†

non-unitary d�(t)
dt

= L(�)

equilibrium → thermal states

time-dependent → real time evolution

Verstraete et al., PRL 2004
Prosen,  Znidaric et al., PRL 2008,...
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MIXED STATES
•MPO = Matrix Product Operator

Another possibility for open dynamics

Dissipative real-time dynamics 
produces a steady state

Approximate it as a MPO

d�(t)
dt

= L(�) fixed point of 
Liouvillian map

L(�S) = 0

works by García-Ripoll et al., Zwolak,  Prosen, ...
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MIXED STATES
•MPO = Matrix Product Operator

Here: variational method for steady state 
MPO

analogous to DMRG

Methods to find steady state simulating long 
time evolution

works by García-Ripoll et al., Zwolak,  Prosen, ...

analogous to imaginary time evolution
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Potential advantages of variational strategy:

Applications:

faster convergence than time evolution

interesting kind of models

collective effects
dissipative QPT

VARIATIONAL STEADY STATES

real time evolution needs to be followed
(operator) entanglement in the MPO?

dissipative QC
entangled states
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VARIATIONAL STEADY STATES
METHOD

Dynamics determined by Liouvillian

d�

dt
= L(�)

Search for the null vector

L̂

L̂|�� = 0

vectorize |��
superoperator L̂

|��

fixed point of evolution
WANTED

see also Mascarenhas et al., PRA92, 022116 (2015)
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VARIATIONAL STEADY STATES
METHOD

Analogy to GS search

H

min �

|�GS�

Hermitian

|�S�

L̂ non-Hermitian

� = 0

L̂†L̂|�S� = 0

eL̂|�S� = |�S�

lowest 
eigenvalueL̂†L̂ � 0
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VARIATIONAL STEADY STATES
METHOD

d�
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VARIATIONAL STEADY STATES
METHOD

Master equation of Lindblad form
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VARIATIONAL STEADY STATES
POTENTIAL ISSUES

Positivity

Accuracy of MPO approximation

Degeneracies

fixed point of the evolution

maybe smaller gaps? ⇒ metastable states?
local effective Lindblad operator does not 
preserve any property ⇒ symmetries?

Prosen, Znidaric, 2009
Kastoryano, Eisert, 2013
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NUMERICAL RESULTS
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DICKE MODEL

N  2-level atoms coupled to same EM mode

analytic solution

phase transition to superradiant phase

d�

dt
= �i�[Sx, �] + �

�
S��S+ � 1

2
�S+S� � 1

2
S+S��

�

�
�

=
N

2
conserved total spin

Sx =
N�

n=1

sx collective coupling

Dicke, 1954
Hepp, Lieb, 1973
Carmichael, 1980
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3564 H J Carmichael 

we became aware of this analytic solution. The results reported here were obtained 
using direct numerical techniques to solve the master equation (2.6) in theDicke 
representation. The (N + 1)' equations for matrix elements in this representation 
separate into two dynamically independent schemes: a system of t N ( N  + 1) equations 
coupling only off-diagonal elements, and a system of ($N + 1)(N + 1) equations which 
couple both diagonal and off -diagonal elements. Providing the steady state is unique 
the former can have only the trivial solution, and from the outset we find 

Dynamics within the second system of equations are governed by a matrix having at 
most six non-zero entries in any row. For the majority of cases considered we were able 
to employ an efficient numerical algorithm tailored to the specific form of this sparse 
matrix and yielding steady-state matrix elements directly. Unfortunately, for large N 
and small fl/sZo this method could not be applied as the algorithm became increasingly 
ill conditioned. Here the steady-state density matrix was developed from an initial 
ground state by direct integration. All such cases were restricted to the region below 
threshold and therefore avoided any problems with a rapid oscillatory approach to the 
steady state. 

4.1. Single operator averages 

As a direct consequence of (4.1) ( s + ) ~ ~  is pure imaginary and ( s ~ ) ~ ~  = 0 for all values of 
sZ/flo. The behaviour for ( s y ) s s  and ( s , ) ~ ~  is shown in figure 3. In both instances results 
for ten, twenty and fifty atoms support strongly an approach towards the asymptotic 
expressions from the previous section. In the region above threshold saturation 
features are molded from the underlying oscillatory dynamics and are understood 
simply from the perspective of § 3.4. Equation (3.36) accomplishes two averages; the 
first by integration around trajectories on the Bloch sphere and the second by 
integration over a distribution of such trajectories. Saturation of the population 

0 1 2 

-o,8v -1.0 

08 - 

0.6 - 
-2 

0.4 - 

Figure 3. Steady-state averages ( a )  ( s ~ ) ~ ~  and ( b )  (s, . )~~ for: A, N = 10; B, N = 20 and C, 
N = 50. The broken curve gives the asymptotic results. 
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S =
N

2

DICKE MODEL
asymptotic
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DICKE MODEL

but experimentally difficult
Baumann et al., 2010
Hamner et al., 2014
Baden et al., 2014

phase transitions
collective phenomena
entanglement

dissipative

is an interesting model...
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Do simpler models show similar 
phenomena?more local
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A SIMPLER MODEL

N  2-level systems with dissipation coupling NN

Lower dimensional version of Dicke model

d�

dt
= �i�[Sx, �]+�

�

n

�
S�n n+1�S+

n n+1 �
1
2
�S+

n n+1S
�
n n+1 �

1
2
S+

n n+1S
�
n n+1�

�

S+
n n+1 = �+

n+1 � I + I � �+
n+1
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LOW DIM DICKE MODEL
Liouvillian can be expressed as a small MPO of 

� = 5

No special symmetry

Approximate the steady state by a MPO
fixed D →check convergence
no explicit positivity
no explicit Hermiticity
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N = 10

CXX(1) = �S[i]
x S[i+1]

x � � �S[i]
x ��S[i+1]

x �
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correlations, but 
short

LOW DIM DICKE MODEL
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dramatic change in 
purity
degeneracy...

LOW DIM DICKE MODEL

28Friday 25 September 15



Other interesting models...

29Friday 25 September 15



H =
�

n

�
V
2 �[n]

z �[n+1]
z + �

2 �[n]
x + ��V

2 �[n]
z

�

DISSIPATIVE ISING CHAIN

H =
�

n �[n]
z �[n+1]

z + g�[n]
x

local dissipation
Ln = ���+

n

can be realized by Rydberg atoms

steady state can show AFM ordering
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DISSIPATIVE ISING CHAIN
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correlations
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DISSIPATIVE ISING CHAIN
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Interesting models...
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Ln = µ�+
n � ���n+1

ISING + COHERENT 
DISSIPATION

H =
�

n �[n]
z �[n+1]

z + g�[n]
xg

µ �

coherent dissipation

both Hamiltonian and dissipation can induce 
coherence
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ISING + COHERENT 
DISSIPATION
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ISING + COHERENT 
DISSIPATION

µ = 0.5
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SUMMARY

Very good convergence (varying models, parameters)

Future: symmetries, trace one, degeneracies...

Stability can be delicate
Warm-up phase needed!

much to understand about MPDOs 
representations

NESS can be found variationally

Very small bond dimension required

PRL 114, 220601 (2015)
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