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Program of the talk

@ Boundary driven interacting quantum chain paradigm
and exact solutions via Matrix Product Ansatz

@ New conservation laws and exact bounds on transport coefficients

@ Open problems

Topical Review, J. Phys. A: Math. Theor. 48, 373001 (2015)

Collaborators involved in this work:
Enej llievski (now at University of Amsterdam), Slava Popkov
(Cologne/Florence), Marko Medenjak (PhD student, Ljubljana)
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dp
dt

= Lp:=—i[H, p1+Zj(2L,mLT {LlL p})

Canonical markovian master equation for the many-body density matrix

A40O>» «4Fr «=)» (=) =




Nonequilibrium quantum transport problem in one-dimension

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

= =2p=—ilH, A+ (2LHpLL - {LLLH,p}> .

©w

o Bulk: Fully coherent, local interactions,e.g. H = ZZ;: Ay xt1.
@ Boundaries: Fully incoherent, ultra-local dissipation,
jump operators L, supported near boundaries x =1 or x = n.
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Prime example of exactly solvable NESS: boundary driven XXZ chain

Steady state Lindblad equation ﬁpoo =0:

ilH, poc] = 3 (2Lupoo Ll — {LhLus poc})

n
The XXZ Hamiltonian:
n—1
H= 2(20;0;“ + 205 041 + Dchob )
x=1

and symmetric boundary (ultra local) Lindblad jump operators:

1 1
Llf = E(l_ﬂ)a Ura LIR: 5(1+N)5 O’j7
5 1 . 1 _
L2 = 5(1+/,L)E g1 , L2 = 5(1—/,6)5 Op .

Two key boundary parameters:
@ ¢ System-bath coupling strength
@ 1 Non-equilibrium driving strength (bias)
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)

peo = (trR)'R, R=0QQf

s: s Sn A A Qn
Q= " (0ALA, A, [0)0" © 0% @™ = (0] (Ai Az) 0
(s1,---,8n)E{+,—,0}"
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)

peo = (trR)'R, R=0QQf

s: s Sn A A Qn
Q= S (OlA A, A 0% @0 s =0 (20 40) )
(s1,---,8n)E{+,—,0}"

Ao = > ajlk)K,
k=0
A = Yk, Qe
k=0 0 1 2 3 4
Al = > aglk+1)(r,
k=0
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)

peo = (tr R) 'R, R=0QQ'

s s s Ao AN\Z"
Q= > <0|As1/-\sz~--Asn|0>01®02---®0"=<0|( > 0

(s1,---,sn)€{+,—,0}"

Ao = > ajlk)K,
k=0
Ac o= el Py
k=0 0 1 2 3 4
AL = ek,
k=0
) = cos((s —k)n) cosn = A,
af sin((k + 1)) tan(ns) = 2ising
a, = cos((2s— k)n) s is a q—deformed complex spin g = e'”
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cf. Asymmetric simple exclusion process (ASEP)

Markovian model on a 2" dimensional probability state vector p(t):
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[from talk of K. Mallick]
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cf. Asymmetric simple exclusion process (ASEP)

Markovian model on a 2" dimensional probability state vector p(t):
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[from talk of K. Mallick]

Nonequilibrium steady state (NESS): a fixed point probability state vector P

MBOQZO
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Derrida, Evans, Hakim & Pasquier (1993):

MPA :

Ps1,s2,....sp = <L|AS1A52 e ASL|R>a

s € {0,1}
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Matrix Product Ansatz (MPA)

Derrida, Evans, Hakim & Pasquier (1993):

Let Ao, A; be a pair of matrices, and (L|, |R) a pair of left and right ‘vacua’. J

MPA : Psi,s2,....sp. = <L|A51A52 e ASL|R>7 sj € {07 1}

Asking such MPA p to solve the Markov fixed point condition Mp = 0 results
in a single algebraic relation in the bulk

A1Ao — gAoA: = (1 — q)(Ao + A1)
with two boundary conditions

(L[(cAo — A1) = (L|, (BA1—3A0)IR) = [R)
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Observables in NESS: From insulating to ballistic transport

e For |A| < 1, (J) ~ n® (ballistic)
@ For |A| > 1, (J) ~ exp(—constn) (insulating)

e For |A| =1, (J) ~ n~? (anomalous)

1.0 prse

i \ .. ©

0.01

05}

00/

I

5
05 0.001

-1.0 i 104

Tomaz Prosen MPS of boundary driven quantum chains



Two-point spin-spin correlation function in NESS

for isotropic case A =1 (XXX)

1.0

&2

-0.5

nC(¢1.82)
-1.0

2
C&,&) = —%51(1 — &)sin(n&)sin(ré2), for & < &

- =
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Yang-Baxter formulation of non-equilibrium integrability

TP, Ilievski and Popkov, NJP(2013)

Cholesky-factor (amplitude operator) Q = Q,(¢) satisfies the “square-root”
Lindblad equation:

[H,Qn(e)] = —ieo” @ Qn—1(e) + ieQn-1(e) @ 0”.
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Yang-Baxter formulation of non-equilibrium integrability

TP, Ilievski and Popkov, NJP(2013)

Cholesky-factor (amplitude operator) Q = Q,(¢) satisfies the “square-root”
Lindblad equation:

[H,Qn(e)] = —ieo” @ Qa-1(e) + 1eQn_1(e) @ 0”.
This follows after considering the Lax operator L € End(C? ® H.,)

_ (sin(¢+nS%)  (sinm)Ss
L(p,s) = <S (s?ﬁ n)gj sin?s&iﬁsﬁ)>

where ST2 is the highest-weight complex-spin irep of Ug(slz) over Ha:

st = Z<s— )1k kI,

sin(k +1
so— D)
k=0 N
_ -~ sin(2s — k
s, = Z%\kJrl)(kL
k=0

and writing

Qu(e) = (O], Liokzs - Los

i
ith o=~ t .
Jar  With =2, tan(ns) == Sising
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Steady state Lindblad eq. in fact follows from telescoping series using the
local operator divergence condition (or Sutherland equation)

[hx,x+1, Lx,a'—x+1,a] = Ex,a LX+1,a - Lx,a LX+1,a7 Lx,a(SO, S) = agpl-x,a(ﬁoy S).
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Steady state Lindblad eq. in fact follows from telescoping series using the
local operator divergence condition (or Sutherland equation)

[hx,x+17 Lx,a'—x+1,a] - i:x,a LX+1,a - Lx,a Ex+l,a> Ex,a(§07 5) = 8Lpl-x,a(§57 S).
This, in turn, is equivalent to YBE (or so-called RLL relation)
Ri2(p2 = p1)lia(p1,5)L2.a(02,5) = Lia(p2, 5)L2.a(01, 5)Ri2(p2 — ¢1)

where Ry > = Iv?Lg P1 > is the 6-vertex R-matrix yielding the XXZ hamiltonian as

hi2=20,Ri2

»=0-
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However, using the concept of universal R-matrix there is an infinitely
dimensional matrix interwining the representation parameters

Rax,a2 Lx,as (91, 51)Lx,aa (02, 52) = Lxag (02, 52)Lx,az (91, 51)Ray 0
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However, using the concept of universal R-matrix there is an infinitely
dimensional matrix interwining the representation parameters

I\éahaz Lx,az (@17 sl)LXAiz (5027 52) = Lx,ay (5027 52)LX,62(§017 Sl)ﬁahaz
Remarkably, together with the property
(0],,, (0, Raz a2 = (0], (Ol.,  Ray.a2[0),,10),, = 10),,10),,

this immediately implies the commutatvity [W,(¢1, 51), Wh(p2,52)] = 0 of the
generalised highest-weight transfer matrix

Wa(p,s) = (Of,L1.a(p,s) - - Laalp: 9)[0),;  Qn(e) = Wa(7/2, 5(e))-
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However, using the concept of universal R-matrix there is an infinitely
dimensional matrix interwining the representation parameters

~

Ral,az Lx,a; (@17 sl)l-x,az (902, 52) = Lx,al (LPZ, 52)Lx,a2(§017 Sl)ﬁahaz
Remarkably, together with the property
(0],,, (0, Raz a2 = (0], (Ol.,  Ray.a2[0),,,10),, = 0),,10),,

this immediately implies the commutatvity [W, (1, s1), Wa(p2, s2)] = 0 of the
generalised highest-weight transfer matrix

Wa(,5) = (O],L1a(:5) - Laa(p, )00, Qu(e) = Walm/2,5(c)).

Namely,
Wa(p1,51)Wa(p2,52) = (0], (0],,Rasaz | [ Lear (1, 51)Lr,az (02, 52)[0),, [0),,
x=1
= (0], 0L, [ [ Lxaa (2, 2)Lxaa (1, 51)Ray 22 [0) ,, [0)

x=1

Wi (02, 52) Wa(p1, s1)
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Quasi-local conservation laws

Local conserved operators [H, Qm] = [Q@m, Q/] = 0, typically derived via
Algebraic Bethe Ansatz machinery

_ ®x 1 — (m)
Qm = 87 log traL®*"(p, §)|¢:§ =37, QoxH
satisfy extensivity property ((e) = tr(e)/tr1):

(Q,%,) o n.
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Quasi-local conservation laws

Local conserved operators [H, Qm] = [Qm, Q/] = 0, typically derived via
Algebraic Bethe Ansatz machinery

Qm = 0 log tral® (¢, )| ez = 2, ™ Qo H
satisfy extensivity property ((e) = tr(e)/tr1):
(QZ) o n.

Definition (quasi-locality):

Nonlocal operator A € End((C?)®"), with n—independent {(ax ® 1,_x)A) for
any locally supported fixed ax and with extensivity property

(ATA)  n

is called quasi-local.
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Observations:

(TP, PRL106(2011); TP and Ilievski, PRL111(2013); TP, NPB886(2014);
Pereira et al., JSTAT2014)

Tomaz Prosen

[m]

- =
MPS of boundary driven quantum chains




Observations:
(TP, PRL106(2011); TP and Ilievski, PRL111(2013); TP, NPB886(2014);
Pereira et al., JSTAT2014)

@ All local @, are spin-flip invariant
PQm = QmP, P =(c%)%".

since PWi (¢, 2)P™1 = Wi(p, 1)
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Observations:
(TP, PRL106(2011); TP and Ilievski, PRL111(2013); TP, NPB886(2014);
Pereira et al., JSTAT2014)

@ All local @, are spin-flip invariant
PQm = QmP, P =(c%)%".

since PWi (¢, 2)P™1 = Wi(p, 1)

© However, for generic s € C

PW,,(QO,S)P71 = Wa(r — o, s)T # Wha(p,s).
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Observations:
(TP, PRL106(2011); TP and Ilievski, PRL111(2013); TP, NPB886(2014);
Pereira et al., JSTAT2014)

@ All local @, are spin-flip invariant
PQm = QmP, P = ()"
since PWi (¢, 2)P™1 = Wi(p, 1)
© However, for generic s € C
PWi(0, )P~ = Wa(r — @,5)7 # Wa(p, s).

© Derivative w.r.t. s at the scalar point s = 0 is quasi-local if n = 7l/m

s m
Zo(¢) = cn 0 Wa(2.5)lsw0,  (Z3(9)Zn()) xx 0 for [Rep — o] < 5~

and almost conserved, e.g., for p = 3

[H,Z,] = 0f — o7..
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Observations:

(TP, PRL106(2011); TP and Ilievski, PRL111(2013); TP, NPB886(2014);
Pereira et al., JSTAT2014)

@ All local @, are spin-flip invariant
PQm = QmP, P = ()"
since PWi (¢, 2)P™1 = Wi(p, 1)
© However, for generic s € C
PWi(0, )P~ = Wa(r — @,5)7 # Wa(p, s).
© Derivative w.r.t. s at the scalar point s = 0 is quasi-local if n = 7l/m
™

s
Zo(¢) = cn 0 Wa(0,5)ls=0,  (Z3(#)Zn(g)) o for [Rep — o| < 5

and almost conserved, e.g., for p = 3
[H, Z] = 01 — oy,
Q Q =i(Z — Z") has been the first known quasi-local CL of odd parity

PQ = —QP
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Implication for linear response spin transport

Green-Kubo formulae express the conductivities in terms of current a.c.f.

o . /6 ¢ ! _iwt ’

K(w) = tl_l}n;o n||—>n;oﬁ | dt’e™"(J(t)J(0)) 4

When d.c. conductivity diverges, one defines a Drude weight D
k(w) = 27D (w) + Kreg(w)

which in linear response expresses as
t

. . /B ’ ’
D= lim lim 2/, dt’ (J(t)J(0)) 5-

t—oo n—oo 2th
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Implication for linear response spin transport

Green-Kubo formulae express the conductivities in terms of current a.c.f.

k(@) = lim fim f/ at' et (J(¢)J(0))

t— o0 n—oo
When d.c. conductivity diverges, one defines a Drude weight D
k(w) = 27 Dé(w) + Kreg(w)

which in linear response expresses as

t

D= lim lim 2ﬂ i ' (J(£')J(0)) 5.

t—oo n—oo 2tn

For integrable quantum systems, Zotos, Naef and Prelovsek (1997) suggested
to use Mazur/Suzuki (1969/1971) bound, estimating Drude weight in terms of
local conserved operators Q;, [H, Q;] = O:

Dzn'meTZ Qm

where operators Q. are chosen mutually orthogonal (Qka)ﬁ =0 for m # k.
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Implication for linear response spin transport

Green-Kubo formulae express the conductivities in terms of current a.c.f.

k(w) = lim lim @/Otdt'em<J(t’)J(0)>6

t—oco h—oco N
When d.c. conductivity diverges, one defines a Drude weight D
k(w) = 2w D (w) + Kreg(w)

which in linear response expresses as
t

T . 5 / ’
D= lim lim 2 J, dt’ (J(t')J(0)) 5-

t—o0 n—oo

For integrable quantum systems, Zotos, Naef and Prelovsek (1997) suggested
to use Mazur/Suzuki (1969/1971) bound, estimating Drude weight in terms of
local conserved operators Q;, [H, Q;] = O:

where operators @, are chosen mutually orthogonal <Q’"Qk>6 =0 for m # k.

Considering the spin current J =13 (0} 0,,, — 0x 05,1), being of odd parity I
PJ = —JP, one has (JQ;) =0, so Mazur bound is trivial.
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Mazur bound with the novel quasi-local CL

However, almost conserved odd quasi-local operator Q, or correspondingly
extended holomorphic family K = {Q(¢)}, can be used to bound the spin
Drude weight:

Fractal Drude weight bound

2200 - T 1 Zun(%)). s-en(3)

10

0.8

0.6

Dz, Dk

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

TP, PRL 106 (2011); Ilievski and TP, CMP 318 (2013);
TP and Ilievski, PRL 111 (2013)
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... exists even in the isotropic XXX spin 1/2 chain!
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Another type of quasilocal conserved operators

... exists even in the isotropic XXX spin 1/2 chain!
Theorem [Ilievski, Medenjak, TP, arXiv:1506.05049]

Traceless operators Xs(t), s € 3Z, t € R, defined as

Xs(t) [rs(]7" {Te(=3 +it) To(5 +it)},
=@l = & (sri)F,

where T5()\) = traL(), s)®*", TI(\) = 0\ Ts(N),
are quasilocal for all s, t and linearly independent from {Qm; m > 1} for s > %

y
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Another type of quasilocal conserved operators

... exists even in the isotropic XXX spin 1/2 chain!
Theorem [Ilievski, Medenjak, TP, arXiv:1506.05049]

Traceless operators Xs(t), s € 3Z, t € R, defined as
Xs(t) [rs(O)] " {Ts(—3 +it) To(5 +it) },
w@) = =F=(sEa),

where T5(A\) = traL(), 8)®*", TL(A) = 0x Ts()),
are quasilocal for all s, t and linearly independent from {Qm; m > 1} for s > %

...and it resolves (!) the 2014—controversy with GGE
(Wouters et al. PRL 2014, Pozsgay et al. PRL 2014)
see:

(Ilievski, De Nardis, Wouters, Caux, Essler, TP,
arXiv:1507.02993)

Tomaz Prosen MPS of boundary driven quantum chains



TP, PRL 112 (2014)

n—1 n
=3 . -
Ho =D (of o5+ 7 1 + He) + 2 L ofr)
j=1 :

Ly =+eoy, Lo = er, Ls=eo,, La=+er,

«O>r «Fr «=>r = )
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TP, PRL 112 (2014)

n—1

_ + - +
Hn = Z(Uj Ojt1 + T Tj
j=1

n
u Z _Z
+1+H~C-)+ZZ‘7JTJ
Jj=1
Ly =eof, Lo =er{, Ls = Veo,, La=/er,

Key ansatz for NESS density matrix

‘épOO = 07
again a decomposition a-la Cholesky:

Poo = Q..
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Walking graph state representation of the solution

n
b*(ej) _bY(ej)
Q, = E aelae2~~-as,,Hcrj P

€E€Wn(0,0) j=1
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Lax form of NESS for the Hubbard chain

Popkov and TP, PRL 114, 127201 (2015)

Amplitude Lindblad equation can again be reduced to LOD

[hx,x+17 Lx,a'—x+1,a] = Ex,a Lx+1,a - Lx,a I-x+1,aL
plus appropriate boundary conditions for the dissipators, solved with:

Qn(g) = <0‘a|-1,a|-2,a cee Ln,a

0> )

a

again forming a commuting family

[Qn(2), 2n(e")] = 0.
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Lax operator admits very appealing factorization

Lea(e) = > SaTiXa(u, €)o7
a,Be{+,—,0,z}

772t
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Lax operator admits very appealing factorization

Ly,a(e) = Z SOTEXa(u, e)oery
a,Be{+,—,0,2}

72

12"

s

S2 and T¥ are particular commuting ([SS, TZ] = 0) representations of an
extended CAR:

{s*,8s7} =2(s° - 5%, [S*S°]=][S*S"]=0.
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Bonus: Quadratically extensive conserved quantities of the Hubbard chain

Let the lattice of n+ 1 sites be A, =[—n/2,n/2]. Then:
Qn, = i(Zn — Z])

where Z, = i(d/de)Qn|c=0

n/2—1 x<y
1 — — u xX— o — T —
Zy = 5 E (U;Ux+1+T;Tx+1)+§ E (-1) ya;“P)((Jr)l‘y,lay T:PiJr)l,yflTy ,
x=—n/2 X, yENp

P)(f’y) = 0%0%41- Oy, P)((T; = TyTey1- - Ty, and Pi‘ff) =1ifx>y,
satisfying the almost conservation condition

1 z z z z
[HAn7 QAn] = E(Ufn/Z + T—n/2 = Onj2 — 7-n/2)'
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Bonus: Quadratically extensive conserved quantities of the Hubbard chain

Let the lattice of n+ 1 sites be A, = [—n/2,n/2]. Then:

n, = i(Zn — Z))
where Z, = i(d/de)Qn |0
L "2t y
Zn=—3 > (UiU;HJrTfT;ﬂ)*Q I G VTS v o SR o
x=—n/2 x,yE€An

Py = 0%0% 0%, PT) i= 1272, 75, and PG = 1if x >y,
satisfying the almost conservation condition

1 z z z z
[Hnn> Qn,] = E(U—n/z +Tn2 = Onj2 — Tn/z)-

Qn, is quadratically extensive, as (Q}, ) — qn°
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Strict lower bounds on Green-Kubo diffusion constants in terms of
quadratically extensive almost conserved quantities PRE 89,012142(2014)

Theorem: Take an arbitrary self-adjoint local current density operator j, satis-
fying (j) = 0, where () is an infinite temperature (tracial) state, and define a
spatiotemporal correlation function of the infinite lattice dynamics as

Clx,t) = lim (j(0,0)j(x, t)). (1)
Assuming that C(t) := > 72 C(x, t) exists for any t, that D := [*°_dt C(t)

and D" := [ _dt|t|C(t) exist as well, and that Qn, has a well defined compo-

nent along j, @ :=limp—o (jQn,), the following inequality holds

j12
o> 2L @

where v is the Lieb-Robinson group velocity.
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Strict lower bounds on Green-Kubo diffusion constants in terms of
quadratically extensive almost conserved quantities PRE 89,012142(2014)

Theorem: Take an arbitrary self-adjoint local current density operator j, satis-
fying (j) = 0, where (o) is an infinite temperature (tracial) state, and define a
spatiotemporal correlation function of the infinite lattice dynamics as

Clx, ) = lim (j(0,0)j(x; t)). (1)
Assuming that C(t) := >3 C(x, t) exists for any t, that D := [*°_dt C(t)

and D" := [ _dt|t|C(t) exist as well, and that Qn, has a well defined compo-
nent along j, @ := limy_ 00 (j@n,,), the following inequality holds

j|2
o> 2L @

where v is the Lieb-Robinson group velocity.

For example, for the Hubbard chain, our bound evaluates to
- s 2
Dl.& > .
— 3u?
for spin and charge currents
j P ==2i[c"®cT -0 ®o" (T ®7" — 7 ®7")] satisfying continuity [
equations i[Hn,, 0% + 2] = jo° — jo°1. (Agrees with DMRG. numerics!)
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The pictorial proof of the theorem..

/qnt':1

| t /O" dt’ (Tf’(JAﬁ) — %Q/\n)

Since A2, >0, we have (A3,) >0forany t =t,,a €R, n€Z":

tn tn 1 tn 2a a2 )
/ dt'/ dt” <Trf(JAk)Tt~(JAk)>—/ dt' (7o (Jpk) Qna ) +—5 (QR,) = 0.
0 o t n n 0 nt n n

t
@-knl
2V,
Tt(b—%) _cd=kn Jx
.....OOOOODODZDDO%@O{

Ti(by)

>00000®©800000000eSSEGES

m]
Tomaz Prosen
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Lai-Sutherland SU(3) model with degenerate dissipative driving

Ilievski and TP, NPB 882 (2014)

L

hx,x+1 =P xx+1

I BN - - - I .

n—1
H= E hx,x+1
x=1
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Lai-Sutherland SU(3) model with degenerate dissipative driving

Ilievski and TP, NPB 882 (2014)

Ly

hx,x+1 = x,x+1

NN NN e o o IINNNEE

I |
n—1

H= g hx,x+1
x=1

Again, Cholesky factor of NESS has a Lax form, where the auxiliary space now

needs 2 oscillator modes and a complex spin (basis labelled by inf. 3D lattice).
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Lai-Sutherland SU(3) model with degenerate dissipative driving

Ilievski and TP, NPB 882 (2014)

hx,x+1 :Px,x+1

L1 I DN DN I .
_____°'°__L2
I I | |

n—1
H= Z hx,x+1
x=1
Again, Cholesky factor of NESS has a Lax form, where the auxiliary space now
needs 2 oscillator modes and a complex spin (basis labelled by inf. 3D lattice).

NESS manifold is infinitely degenerate (in TD limit). NESSes can be labeled by
the fixed number of green particles (‘doping’ /chemical potential in TDL).

Tomaz Prosen MPS of boundary driven quantum chains



o Why only “pure particle-source on one-end and pure particle-sink on the
other-end” boundary conditions seem to be generally exactly solvable?

@ More general boundary conditions need to be discussed. Perhaps
generalising the notion of Sklyanin Reflection Algebra.

@ The interpretation in terms of quantum symmetries are missing for some
solutions, e.g. of open Hubbard chain.

No apparent link to integralility structures (R& L-matrix) proposed by
Shastry.

@ No exact solutions of Liouvillian decay modes of boundary driven
integrable chains known so far.
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