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Nonequilibrium quantum transport problem in one-dimension

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
.
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Nonequilibrium quantum transport problem in one-dimension

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
.

Bulk: Fully coherent, local interactions,e.g. H =
∑n−1

x=1 hx,x+1.
Boundaries: Fully incoherent, ultra-local dissipation,
jump operators Lµ supported near boundaries x = 1 or x = n.
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Prime example of exactly solvable NESS: boundary driven XXZ chain

Steady state Lindblad equation L̂ρ∞ = 0:

i[H, ρ∞] =
∑
µ

(
2Lµρ∞L†µ − {L†µLµ, ρ∞}

)
The XXZ Hamiltonian:

H =
n−1∑
x=1

(2σ+
x σ
−
x+1 + 2σ−x σ

+
x+1 + ∆σz

xσ
z
x+1)

and symmetric boundary (ultra local) Lindblad jump operators:

LL
1 =

√
1
2

(1− µ)ε σ+
1 , LR

1 =

√
1
2

(1 + µ)ε σ+
n ,

LL
2 =

√
1
2

(1 + µ)ε σ−1 , LR
2 =

√
1
2

(1− µ)ε σ−n .

Two key boundary parameters:

ε System-bath coupling strength

µ Non-equilibrium driving strength (bias)

Tomaž Prosen MPS of boundary driven quantum chains



Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( trR)−1R, R = ΩΩ†

Ω =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1 ⊗ σs2 · · · ⊗ σsn = 〈0|
(

A0 A+

A− A0

)⊗n

|0〉

Tomaž Prosen MPS of boundary driven quantum chains



Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( trR)−1R, R = ΩΩ†

Ω =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1 ⊗ σs2 · · · ⊗ σsn = 〈0|
(

A0 A+

A− A0

)⊗n

|0〉

A0 =
∞∑

k=0

a0
k |k〉〈k|,

A+ =
∞∑

k=0

a+
k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |,

0 1 2 3 4
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( trR)−1R, R = ΩΩ†

Ω =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σ

s1 ⊗ σs2 · · · ⊗ σsn = 〈0|
(

A0 A+

A− A0

)⊗n

|0〉

A0 =
∞∑

k=0

a0
k |k〉〈k|,

A+ =
∞∑

k=0

a+
k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |,

0 1 2 3 4

a0
k = cos((s − k)η) cos η := ∆,

a+
k = sin((k + 1)η) tan(ηs) :=

ε

2i sin η

a−k = cos((2s − k)η) s is a q−deformed complex spin q = eiη
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cf. Asymmetric simple exclusion process (ASEP)

Markovian model on a 2L dimensional probability state vector p(t):

d
dt

p = Mp

Total Current transported through an Open System

A paradigm of a non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

K. Mallick Exact Solutions in Nonequilibrium Statistical Mechanics

[from talk of K. Mallick]
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cf. Asymmetric simple exclusion process (ASEP)

Markovian model on a 2L dimensional probability state vector p(t):

d
dt

p = Mp

Total Current transported through an Open System

A paradigm of a non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

K. Mallick Exact Solutions in Nonequilibrium Statistical Mechanics

[from talk of K. Mallick]

Nonequilibrium steady state (NESS): a fixed point probability state vector p
∞

Mp
∞

= 0
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Matrix Product Ansatz (MPA)

Derrida, Evans, Hakim & Pasquier (1993):

Let A0,A1 be a pair of matrices, and 〈L|, |R〉 a pair of left and right ‘vacua’.

MPA : ps1,s2,...,sL = 〈L|As1As2 · · ·AsL |R〉, sj ∈ {0, 1}
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Matrix Product Ansatz (MPA)

Derrida, Evans, Hakim & Pasquier (1993):

Let A0,A1 be a pair of matrices, and 〈L|, |R〉 a pair of left and right ‘vacua’.

MPA : ps1,s2,...,sL = 〈L|As1As2 · · ·AsL |R〉, sj ∈ {0, 1}

Asking such MPA p to solve the Markov fixed point condition Mp = 0 results
in a single algebraic relation in the bulk

A1A0 − qA0A1 = (1− q)(A0 + A1)

with two boundary conditions

〈L|(αA0 − γA1) = 〈L|, (βA1 − δA0)|R〉 = |R〉
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Observables in NESS: From insulating to ballistic transport

For |∆| < 1, 〈J〉 ∼ n0 (ballistic)

For |∆| > 1, 〈J〉 ∼ exp(−constn) (insulating)

For |∆| = 1, 〈J〉 ∼ n−2 (anomalous)
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Two-point spin-spin correlation function in NESS

C
(x
n
,
y
n

)
= 〈σz

xσ
z
y 〉 − 〈σz

x〉〈σz
y 〉

for isotropic case ∆ = 1 (XXX )

C(ξ1, ξ2) = −π
2

2n
ξ1(1− ξ2) sin(πξ1) sin(πξ2), for ξ1 < ξ2
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Yang-Baxter formulation of non-equilibrium integrability

TP, Ilievski and Popkov, NJP(2013)

Cholesky-factor (amplitude operator) Ω = Ωn(ε) satisfies the “square-root”
Lindblad equation:

[H,Ωn(ε)] = −iεσz ⊗ Ωn−1(ε) + iεΩn−1(ε)⊗ σz.
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Yang-Baxter formulation of non-equilibrium integrability

TP, Ilievski and Popkov, NJP(2013)

Cholesky-factor (amplitude operator) Ω = Ωn(ε) satisfies the “square-root”
Lindblad equation:

[H,Ωn(ε)] = −iεσz ⊗ Ωn−1(ε) + iεΩn−1(ε)⊗ σz.

This follows after considering the Lax operator L ∈ End(C2 ⊗Ha)

L(ϕ, s) =

(
sin(ϕ+ ηSz

s) (sin η)S−s
(sin η)S+

s sin(ϕ− ηSz
s)

)
where S±,zs is the highest-weight complex-spin irep of Uq(sl2) over Ha:

Sz
s =

∞∑
k=0

(s − k)|k〉〈k|,

S+
s =

∞∑
k=0

sin(k + 1)η

sin η
|k〉〈k + 1|,

S−s =
∞∑

k=0

sin(2s − k)η

sin η
|k + 1〉〈k|.

and writing

Ωn(ε) = 〈0|aL1,aL2,a · · · Ln,a|0〉a, with ϕ =
π

2
, tan(ηs) :=

ε

2i sin η
.
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Steady state Lindblad eq. in fact follows from telescoping series using the
local operator divergence condition (or Sutherland equation)

[hx,x+1, Lx,aLx+1,a] = ~Lx,a Lx+1,a − Lx,a ~Lx+1,a, ~Lx,a(ϕ, s) ≡ ∂ϕLx,a(ϕ, s).

Tomaž Prosen MPS of boundary driven quantum chains



Steady state Lindblad eq. in fact follows from telescoping series using the
local operator divergence condition (or Sutherland equation)

[hx,x+1, Lx,aLx+1,a] = ~Lx,a Lx+1,a − Lx,a ~Lx+1,a, ~Lx,a(ϕ, s) ≡ ∂ϕLx,a(ϕ, s).

This, in turn, is equivalent to YBE (or so-called RLL relation)

Ř1,2(ϕ2 − ϕ1)L1,a(ϕ1, s)L2,a(ϕ2, s) = L1,a(ϕ2, s)L2,a(ϕ1, s)Ř1,2(ϕ2 − ϕ1)

where R1,2 = Ř1,2P1,2 is the 6-vertex R-matrix yielding the XXZ hamiltonian as

h1,2 = 2∂ϕŘ1,2|ϕ=0.
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However, using the concept of universal R-matrix there is an infinitely
dimensional matrix interwining the representation parameters

Řa1,a2Lx,a1(ϕ1, s1)Lx,a2(ϕ2, s2) = Lx,a1(ϕ2, s2)Lx,a2(ϕ1, s1)Řa1,a2
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However, using the concept of universal R-matrix there is an infinitely
dimensional matrix interwining the representation parameters

Řa1,a2Lx,a1(ϕ1, s1)Lx,a2(ϕ2, s2) = Lx,a1(ϕ2, s2)Lx,a2(ϕ1, s1)Řa1,a2

Remarkably, together with the property

〈0|a1
〈0|a2

Řa1,a2 = 〈0|a1
〈0|a2

, Řa1,a2 |0〉a1
|0〉a2

= |0〉a1
|0〉a2

this immediately implies the commutatvity [Wn(ϕ1, s1),Wn(ϕ2, s2)] = 0 of the
generalised highest-weight transfer matrix

Wn(ϕ, s) = 〈0|aL1,a(ϕ, s) · · · Ln,a(ϕ, s)|0〉a, Ωn(ε) = Wn(π/2, s(ε)).
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However, using the concept of universal R-matrix there is an infinitely
dimensional matrix interwining the representation parameters

Řa1,a2Lx,a1(ϕ1, s1)Lx,a2(ϕ2, s2) = Lx,a1(ϕ2, s2)Lx,a2(ϕ1, s1)Řa1,a2

Remarkably, together with the property

〈0|a1
〈0|a2

Řa1,a2 = 〈0|a1
〈0|a2

, Řa1,a2 |0〉a1
|0〉a2

= |0〉a1
|0〉a2

this immediately implies the commutatvity [Wn(ϕ1, s1),Wn(ϕ2, s2)] = 0 of the
generalised highest-weight transfer matrix

Wn(ϕ, s) = 〈0|aL1,a(ϕ, s) · · · Ln,a(ϕ, s)|0〉a, Ωn(ε) = Wn(π/2, s(ε)).

Namely,

Wn(ϕ1, s1)Wn(ϕ2, s2) = 〈0|a1
〈0|a2

Řa1,a2

n∏
x=1

Lx,a1(ϕ1, s1)Lx,a2(ϕ2, s2)|0〉a1
|0〉a2

= 〈0|a1
〈0|a2

n∏
x=1

Lx,a1(ϕ2, s2)Lx,a2(ϕ1, s1)Řa1,a2 |0〉a1
|0〉a2

= Wn(ϕ2, s2)Wn(ϕ1, s1)
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Quasi-local conservation laws

Local conserved operators [H,Qm] = [Qm,Ql ] = 0, typically derived via
Algebraic Bethe Ansatz machinery

Qm = ∂m
ϕ log traL⊗xn(ϕ, 1

2 )|ϕ= η
2

=
∑

x q
(m)
x , Q1 ∝ H

satisfy extensivity property (〈•〉 = tr (•)/ tr1):

〈Q2
m〉 ∝ n.
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Quasi-local conservation laws

Local conserved operators [H,Qm] = [Qm,Ql ] = 0, typically derived via
Algebraic Bethe Ansatz machinery

Qm = ∂m
ϕ log traL⊗xn(ϕ, 1

2 )|ϕ= η
2

=
∑

x q
(m)
x , Q1 ∝ H

satisfy extensivity property (〈•〉 = tr (•)/ tr1):

〈Q2
m〉 ∝ n.

Definition (quasi-locality):

Nonlocal operator A ∈ End((C2)⊗n), with n−independent 〈(ak ⊗ 1n−k)A〉 for
any locally supported fixed ak and with extensivity property

〈A†A〉 ∝ n

is called quasi-local.
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Observations:
(TP, PRL106(2011); TP and Ilievski, PRL111(2013); TP, NPB886(2014);
Pereira et al., JSTAT2014)

1 All local Qm are spin-flip invariant

PQm = QmP, P = (σx)⊗n.

since PWn(ϕ, 1
2 )P−1 = Wn(ϕ, 1

2 )

2 However, for generic s ∈ C

PWn(ϕ, s)P−1 = Wn(π − ϕ, s)T 6= Wn(ϕ, s).

3 Derivative w.r.t. s at the scalar point s = 0 is quasi-local if η = πl/m

Zn(ϕ) = cn ∂sWn(ϕ, s)|s=0, 〈Z †n (ϕ)Zn(ϕ)〉 ∝ n for |Reϕ− π

2
| < π

2m

and almost conserved, e.g., for ϕ = π
2

[H,Zn] = σz
1 − σz

n.

4 Q = i(Z − Z †) has been the first known quasi-local CL of odd parity

PQ = −QP
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Implication for linear response spin transport

Green-Kubo formulae express the conductivities in terms of current a.c.f.

κ(ω) = lim
t→∞

lim
n→∞

β

n

∫ t

0
dt′eiωt〈J(t′)J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
n→∞

β

2tn

∫ t

0
dt′〈J(t′)J(0)〉β .
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Implication for linear response spin transport

Green-Kubo formulae express the conductivities in terms of current a.c.f.

κ(ω) = lim
t→∞

lim
n→∞

β

n

∫ t

0
dt′eiωt〈J(t′)J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
n→∞

β

2tn

∫ t

0
dt′〈J(t′)J(0)〉β .

For integrable quantum systems, Zotos, Naef and Prelovšek (1997) suggested
to use Mazur/Suzuki (1969/1971) bound, estimating Drude weight in terms of
local conserved operators Qj , [H,Qj ] = 0:

D ≥ lim
n→∞

β

2n

∑
m

〈JQm〉2β
〈Q2

m〉β

where operators Qm are chosen mutually orthogonal 〈QmQk〉β = 0 for m 6= k.
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Implication for linear response spin transport

Green-Kubo formulae express the conductivities in terms of current a.c.f.

κ(ω) = lim
t→∞

lim
n→∞

β

n

∫ t

0
dt′eiωt〈J(t′)J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
n→∞

β

2tn

∫ t

0
dt′〈J(t′)J(0)〉β .

For integrable quantum systems, Zotos, Naef and Prelovšek (1997) suggested
to use Mazur/Suzuki (1969/1971) bound, estimating Drude weight in terms of
local conserved operators Qj , [H,Qj ] = 0:

D ≥ lim
n→∞

β

2n

∑
m

〈JQm〉2β
〈Q2

m〉β

where operators Qm are chosen mutually orthogonal 〈QmQk〉β = 0 for m 6= k.

Considering the spin current J = i
∑

x(σ+
x σ
−
x+1 − σ

−
x σ

+
x+1), being of odd parity

PJ = −JP, one has 〈JQj 〉 ≡ 0, so Mazur bound is trivial.
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Mazur bound with the novel quasi-local CL

However, almost conserved odd quasi-local operator Q, or correspondingly
extended holomorphic family K = {Q(ϕ)}, can be used to bound the spin
Drude weight:
Fractal Drude weight bound

D
β
≥ DZ :=

sin2(πl/m)

sin2(π/m)

(
1− m

2π
sin
(
2π
m

))
, ∆ = cos

(
πl
m

)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

D

D
Z,

D
K

TP, PRL 106 (2011); Ilievski and TP, CMP 318 (2013);
TP and Ilievski, PRL 111 (2013)
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Another type of quasilocal conserved operators

. . . exists even in the isotropic XXX spin 1/2 chain!
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Another type of quasilocal conserved operators

. . . exists even in the isotropic XXX spin 1/2 chain!

Theorem [Ilievski, Medenjak, TP, arXiv:1506.05049]

Traceless operators Xs(t), s ∈ 1
2Z, t ∈ R, defined as

Xs(t) = [τs(t)]−n {Ts(− 1
2 + it)T ′s ( 1

2 + it)
}
,

τs(t) = −t2 −
(
s + 1

2

)2
,

where Ts(λ) = tr aL(λ, s)⊗xn, T ′s (λ) ≡ ∂λTs(λ),
are quasilocal for all s, t and linearly independent from {Qm;m ≥ 1} for s > 1

2
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Another type of quasilocal conserved operators

. . . exists even in the isotropic XXX spin 1/2 chain!

Theorem [Ilievski, Medenjak, TP, arXiv:1506.05049]

Traceless operators Xs(t), s ∈ 1
2Z, t ∈ R, defined as

Xs(t) = [τs(t)]−n {Ts(− 1
2 + it)T ′s ( 1

2 + it)
}
,

τs(t) = −t2 −
(
s + 1

2

)2
,

where Ts(λ) = tr aL(λ, s)⊗xn, T ′s (λ) ≡ ∂λTs(λ),
are quasilocal for all s, t and linearly independent from {Qm;m ≥ 1} for s > 1

2

. . . and it resolves (!) the 2014–controversy with GGE
(Wouters et al. PRL 2014, Pozsgay et al. PRL 2014)
see:
(Ilievski, De Nardis, Wouters, Caux, Essler, TP,
arXiv:1507.02993)
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Analytical solution of NESS for Hubbard chain

TP, PRL 112 (2014)
Extremely boundary driven open fermi Hubbard chain

Hn =
n−1∑
j=1

(σ+
j σ
−
j+1 + τ+

j τ
−
j+1 + H.c.) +

u
4

n∑
j=1

σz
j τ

z
j

L1 =
√
εσ+

1 , L2 =
√
ετ+

1 , L3 =
√
εσ−n , L4 =

√
ετ−n .
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Analytical solution of NESS for Hubbard chain

TP, PRL 112 (2014)
Extremely boundary driven open fermi Hubbard chain

Hn =
n−1∑
j=1

(σ+
j σ
−
j+1 + τ+

j τ
−
j+1 + H.c.) +

u
4

n∑
j=1

σz
j τ

z
j

L1 =
√
εσ+

1 , L2 =
√
ετ+

1 , L3 =
√
εσ−n , L4 =

√
ετ−n .

Key ansatz for NESS density matrix

L̂ρ∞ = 0,

again a decomposition a-la Cholesky:

ρ∞ = ΩnΩ†n.
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Walking graph state representation of the solution

0
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4
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7�2-

Ωn =
∑

e∈Wn(0,0)

ae1ae2 · · · aen

n∏
j=1

σ
bx(ej )

j τ
by(ej )

j .
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Lax form of NESS for the Hubbard chain

Popkov and TP, PRL 114, 127201 (2015)

Amplitude Lindblad equation can again be reduced to LOD

[hx,x+1, Lx,aLx+1,a] = ~Lx,a Lx+1,a − Lx,a ~Lx+1,a

plus appropriate boundary conditions for the dissipators, solved with:

Ωn(ε) = 〈0|aL1,aL2,a · · · Ln,a|0〉a,

again forming a commuting family

[Ωn(ε),Ωn(ε′)] = 0.
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Lax operator admits very appealing factorization
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Sαa and Tβa are particular commuting ([Sαa ,Tβa ] = 0) representations of an
extended CAR:

{S+,S−} = 2(S0 − Sz), [Sα,S0] = [Sα,Sz] = 0.
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Bonus: Quadratically extensive conserved quantities of the Hubbard chain

Let the lattice of n + 1 sites be Λn ≡ [−n/2, n/2]. Then:

QΛn = i(Zn − Z †n )

where Zn = i(d/dε)Ωn|ε=0

Zn = −1
2

n/2−1∑
x=−n/2

(σ+
x σ
−
x+1+τ+

x τ
−
x+1)+

u
2

x<y∑
x,y∈Λn

(−1)x−yσ+
x P

(σ)
x+1,y−1σ

−
y τ

+
x P(τ)

x+1,y−1τ
−
y ,

P(σ)
x,y := σz

xσ
z
x+1 · · ·σz

y , P
(τ)
x,y := τ z

x τ
z
x+1 · · · τ z

y , and P(σ,τ)
x,y ≡ 1 if x > y ,

satisfying the almost conservation condition

[HΛn ,QΛn ] =
1
2

(σz
−n/2 + τ z

−n/2 − σz
n/2 − τ z

n/2).
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QΛn = i(Zn − Z †n )

where Zn = i(d/dε)Ωn|ε=0

Zn = −1
2

n/2−1∑
x=−n/2

(σ+
x σ
−
x+1+τ+

x τ
−
x+1)+

u
2

x<y∑
x,y∈Λn

(−1)x−yσ+
x P

(σ)
x+1,y−1σ

−
y τ

+
x P(τ)

x+1,y−1τ
−
y ,

P(σ)
x,y := σz

xσ
z
x+1 · · ·σz

y , P
(τ)
x,y := τ z

x τ
z
x+1 · · · τ z

y , and P(σ,τ)
x,y ≡ 1 if x > y ,

satisfying the almost conservation condition

[HΛn ,QΛn ] =
1
2

(σz
−n/2 + τ z

−n/2 − σz
n/2 − τ z

n/2).

QΛn is quadratically extensive, as 〈Q2
Λn 〉 → qn2
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Strict lower bounds on Green-Kubo diffusion constants in terms of
quadratically extensive almost conserved quantities PRE 89,012142(2014)

Theorem: Take an arbitrary self-adjoint local current density operator j, satis-
fying 〈j〉 = 0, where 〈•〉 is an infinite temperature (tracial) state, and define a
spatiotemporal correlation function of the infinite lattice dynamics as

C(x , t) = lim
n→∞

〈j(0, 0)j(x , t)〉. (1)

Assuming that C(t) :=
∑∞

x=−∞ C(x , t) exists for any t, that D :=
∫∞
−∞dt C(t)

and D ′ :=
∫∞
−∞dt |t|C(t) exist as well, and that QΛn has a well defined compo-

nent along j, Q j := limn→∞ 〈jQΛn 〉, the following inequality holds

D ≥ |Q
j |2

8vq
. (2)

where v is the Lieb-Robinson group velocity.
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Theorem: Take an arbitrary self-adjoint local current density operator j, satis-
fying 〈j〉 = 0, where 〈•〉 is an infinite temperature (tracial) state, and define a
spatiotemporal correlation function of the infinite lattice dynamics as

C(x , t) = lim
n→∞

〈j(0, 0)j(x , t)〉. (1)

Assuming that C(t) :=
∑∞

x=−∞ C(x , t) exists for any t, that D :=
∫∞
−∞dt C(t)

and D ′ :=
∫∞
−∞dt |t|C(t) exist as well, and that QΛn has a well defined compo-

nent along j, Q j := limn→∞ 〈jQΛn 〉, the following inequality holds

D ≥ |Q
j |2

8vq
. (2)

where v is the Lieb-Robinson group velocity.

For example, for the Hubbard chain, our bound evaluates to

Dc,s ≥ 2
3u2 .

for spin and charge currents
jc,s = −2i

[
σ+ ⊗ σ− − σ− ⊗ σ+ ± (τ+ ⊗ τ− − τ− ⊗ τ+)

]
satisfying continuity

equations i[HΛn , σ
z
x ± τ z

x ] = jc,sx − jc,sx−1. (Agrees with DMRG numerics!)
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The pictorial proof of the theorem..

An,t :=
1
t

∫ t

0
dt′
(
τt′(JΛk

n
)− α

n
QΛn

)
Since A2

n,t ≥ 0, we have 〈A2
n,t〉 ≥ 0 for any t = tn, α ∈ R, n ∈ Z+:∫ tn

0
dt′
∫ tn

0
dt′′

1
t2
〈τt′(JΛk

n
)τt′′(JΛk

n
)〉−
∫ tn

0
dt′

2α
nt
〈τt′(JΛk

n
)QΛn 〉+

α2

n2 〈Q
2
Λn 〉 ≥ 0.

x

t

LnLn
k

n
2

- n
2

k n
2

- k n
2

jxΤtHb- n
2
L ΤtHb n

2
L

H1 - kL n
2 vΜ

tn = c
H1 - kL n

2 vΜ
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Lai-Sutherland SU(3) model with degenerate dissipative driving

Ilievski and TP, NPB 882 (2014)

H =
n−1∑
x=1

hx,x+1
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Lai-Sutherland SU(3) model with degenerate dissipative driving

Ilievski and TP, NPB 882 (2014)

H =
n−1∑
x=1

hx,x+1

Again, Cholesky factor of NESS has a Lax form, where the auxiliary space now
needs 2 oscillator modes and a complex spin (basis labelled by inf. 3D lattice).
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Lai-Sutherland SU(3) model with degenerate dissipative driving

Ilievski and TP, NPB 882 (2014)

H =
n−1∑
x=1

hx,x+1

Again, Cholesky factor of NESS has a Lax form, where the auxiliary space now
needs 2 oscillator modes and a complex spin (basis labelled by inf. 3D lattice).

NESS manifold is infinitely degenerate (in TD limit). NESSes can be labeled by
the fixed number of green particles (‘doping’/chemical potential in TDL).
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Closing with a list of open problems

Why only “pure particle-source on one-end and pure particle-sink on the
other-end” boundary conditions seem to be generally exactly solvable?

More general boundary conditions need to be discussed. Perhaps
generalising the notion of Sklyanin Reflection Algebra.

The interpretation in terms of quantum symmetries are missing for some
solutions, e.g. of open Hubbard chain.
No apparent link to integralility structures (R& L-matrix) proposed by
Shastry.

No exact solutions of Liouvillian decay modes of boundary driven
integrable chains known so far.
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