Matrix Product State and Matrix Product Operator

in Symmetry Protected Topological Phases

Xie Chen, Sep. 2015

Symmetric vs. Symmetry Breaking phases

Transverse field Ising model

$$H = -\sum_{\langle i,j \rangle} Z_i Z_j + B \sum_i X_i$$

Symmetry

$$\prod_{i} X_{i} \qquad \uparrow \Longleftrightarrow \downarrow$$

symmetry breaking

symmetric

$$| \rightarrow \rangle = \frac{1}{\sqrt{2}} | \uparrow \rangle + | \downarrow \rangle$$

Different phases with the same symmetry

2D electronic material

Band Insulator

Kane, Mele (2005)

Topological Insulator

Symmetry Charge conservation, time reversal Similarity Insulating in the bulk Difference Insulating on the Conducting on the boundary boundary Band structure Fermi surface

Gapped quantum phases at zero T

- focus on ground state
- system has some symmetry
- ground state does not break symmetry
- Unusual property on the boundary (conducting channel, gapless modes which carry charge or energy)

- Gapped quantum phases at zero T
- focus on ground state
- system has some symmetry
- If we explicitly break symmetry by adding symmetry breaking perturbations (e.g. adding magnetic impurities to break time reversal)
- Different SPT order can be smoothly connected

Topological Insulators

Realization

Bernevig, Zhang (2006); Bernevig, Hughes, Zhang (2006); Konig et al (2007); Fu, Kane, Mele (2007); Moore, Balents (2007); Roy (2009); Hsieh, et al (2008); Chen, et al (2009);

Classification

Kitaev (2009); Schnyder et al (2009)

Symmetry protected topological order in spin / boson systems?

- Gapped quantum phases at zero T
- system has some symmetry
- ground state does not break symmetry
- Unusual property on the boundary
- If symmetry is explicitly broken, can be smoothly connected to a trivial phase

Example: Haldane phase and AKLT

Haldane (1983); Affleck, Kennedy, Lieb, Tasaki, (1987)

spin 1

$$H = \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + \frac{1}{3} \left(\vec{S}_{i} \cdot \vec{S}_{i+1} \right)^{2}$$

ightharpoonup Singlet $|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle$

AKLT model

- Spin rotation symmetry
- Bulk gapped, does not break symmetry
- effective spin ½ degenerate edge state

Properties	Topological Insulator	AKLT chain
Has certain symmetry	Time reversal and charge conservation	Spin rotation
Ground state does not break symmetry		
Gapped bulk		
Gapless / degenerate edge	Gapless	Degenerate (spin ½)
Can be gapped by breaking symmetry	Magnetic field / superconductivity	Magnetic field

What other SPT phases exist in 1D spin chains?

Matrix Product State rep. of AKLT

$$|\psi\rangle = \sum_{i_1i_2...i_n} Tr(A^{i_1}A^{i_2}...A^{i_n})|i_1i_2...i_n\rangle$$

$$A_x = \sigma_x, A_y = \sigma_y, A_z = \sigma_z$$

$$|x\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |-1\rangle), |y\rangle = \frac{-i}{\sqrt{2}}(|1\rangle + |-1\rangle), |z\rangle = -|0\rangle$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Affleck, Kennedy, Lieb, Tasaki, (1987); D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007)

spin rotation symmetry
$$\prod U^k |\psi\rangle = |\psi\rangle$$

$$U = e^{i\theta \vec{n} \cdot \vec{S}}$$

— M-1
$$\sum_{j} U_{ij}A^{j} = MA^{i}M^{-1}$$

symmetry
$$\prod U^k |\psi\rangle = |\psi\rangle$$
 $U = e^{i\theta\vec{n}\cdot\vec{S}}$
$$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$

$$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$

$$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$

$$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$

AKLT

$$U=e^{i heta ec{n}\cdotec{S}} \qquad M=e^{i hetaec{n}\cdotec{\sigma}}$$
spin 1 $\qquad ec{\sigma} \qquad$ spin 1/2

Physical degree of freedom Effective edge degree of freedom

AKLT

U rotation on spin 1

m rotation on spin 1/2

Symmetry Protected Topological Order

More generally symmetry group G $g \in G$

$$U(g) \qquad U(g) \qquad U(g) \qquad U(g) \qquad M^{-1}(g) M(g) \qquad M(g_1)U(g_2) \qquad U(g_1)U(g_2) \qquad U(g_1g_2) \qquad M(g_1)M(g_2) \qquad M^{-1}(g_1g_2) \qquad M^{-$$

Fannes, Nachtergaele, R. F. Werner (1992); D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007); Pollmann, Berg, Turner, Oshikawa, (2010)

AKLT, spin rotation symmetry

$$U_{\vec{n}}(\pi)U_{\vec{n}}(\pi) = e^{i\pi\vec{n}\cdot\vec{S}}e^{i\pi\vec{n}\cdot\vec{S}} = I$$
$$M_{\vec{n}}(\pi)M_{\vec{n}}(\pi) = e^{i\pi\vec{n}\cdot\vec{\sigma}}e^{i\pi\vec{n}\cdot\vec{\sigma}} = -I$$

- Projective representation
 - different classes cannot be smoothly connected
 - must be > 1D, degeneracy

MPS and general 1D SPT

All gapped ground states in 1D can be represented as MPS!

All gapped MPS transform under symmetry as

Symmetry Protected
Topological Phase with
symmetry G

Projective representation of group G

Verstraete, Cirac (2006); Hastings (2007); Fannes, Nachtergaele, R. F. Werner (1992); D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007); Turner, Pollmann, Berg (2010); **XC**, Gu, Wen (2011); Schuch, Perez-Garcia, Cirac (2011)

MPS and general 1D SPT

Complete classification of phases in interacting systems

Symmetry	Z ₂ x Z ₂	Spin rotation	Time Reversal	Z ₂
d=1	1	1	1	0

- Impossible to achieve by brute force
- Provide important numerical tool
- Starting point for generalization to higher dimensions

2D SPT in spin / boson systems

- Bosonic / spin version of topological insulator?
- Gapped quantum phases at zero T
- system has some symmetry
- ground state does not break symmetry
- Gapless boundary protected by symmetry

2D spin SPT order with Z₂ sym

- Exactly solvable model
- Bulk is gapped
- does not break symmetry
- Gapless boundary
 - need to show that the boundary is gapless under any symmetric interacting perturbation
 - matrix product operator

XC, Liu, Wen (2012)

2 level system |0>, |1>

$$\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

Global Onsite Z₂ symmetry

$$\sigma_{x} \stackrel{CZ}{cz} \sigma_{x}$$
 $\sigma_{x} \stackrel{CZ}{cz} \sigma_{x}$

$$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$
$$+|10\rangle\langle10| - |11\rangle\langle11|$$

Effective boundary state

$$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$

Effective Z₂ symmetry

$$+|10\rangle\langle10|-|11\rangle\langle11|$$

$$CZ$$
 σ_{x} CZ σ_{x} CZ σ_{x} CZ σ_{x} CZ σ_{x} CZ σ_{x} CZ σ_{x} CZ

Must be gapless unless symmetry is broken

$$H=-\sum \sigma_z^i\sigma_z^{i+1}$$
 symmetry breaking

$$H = \sum_{i}^{i} \sigma_{x}^{i} + \sigma_{z}^{i-1} \sigma_{x}^{i} \sigma_{z}^{i+1} \quad \text{gapless}$$

Proven using matrix product state and operator

Effective boundary state

$$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$

 $+|10\rangle\langle10|-|11\rangle\langle11|$

Effective Z₂ symmetry

$$CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ$$

$$|0\rangle, |1\rangle$$

$$- \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

Murg, Cirac, Pirvu, Verstraete (2010)

 If the boundary state can be both symmetric and gapped

Moreover

$$\begin{array}{c} & & & & \\ & &$$

Not consistent

- Effective boundary state
- Effective Z₂ symmetry

$$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$
$$+|10\rangle\langle10| - |11\rangle\langle11|$$
$$\sigma_x \underset{CZ}{\sigma_x} \sigma_x \underset{CZ}{\sigma_z}$$

 It is not possible to have a gapped boundary state without breaking symmetry

General 2D SPT with spins / bosons

- Systematic construction of 2D SPT with any G
- Proves the gapless-ness of symmetric boundary state
- Proves nontrivial SPT order in interacting systems

Symmetry	Z ₂	Charge Conservation (C)	Time Reversal (T)	C & T
d=2	1	∞	0	1

Summary

- In interacting spin / boson systems
- Matrix Product State and classification of 1D symmetry protected topological order
- Matrix Product Operator and systematic construction of 2D symmetry protected topological order
- Gauge transformation of Matrix Product formalism
- Entanglement, localized