Matrix Product State and Matrix Product Operator in Symmetry Protected Topological Phases Xie Chen, Sep. 2015 ### Symmetric vs. Symmetry Breaking phases Transverse field Ising model $$H = -\sum_{\langle i,j \rangle} Z_i Z_j + B \sum_i X_i$$ Symmetry $$\prod_{i} X_{i} \qquad \uparrow \Longleftrightarrow \downarrow$$ symmetry breaking symmetric $$| \rightarrow \rangle = \frac{1}{\sqrt{2}} | \uparrow \rangle + | \downarrow \rangle$$ ### Different phases with the same symmetry 2D electronic material **Band Insulator** Kane, Mele (2005) **Topological Insulator** Symmetry Charge conservation, time reversal Similarity Insulating in the bulk Difference Insulating on the Conducting on the boundary boundary Band structure Fermi surface Gapped quantum phases at zero T - focus on ground state - system has some symmetry - ground state does not break symmetry - Unusual property on the boundary (conducting channel, gapless modes which carry charge or energy) - Gapped quantum phases at zero T - focus on ground state - system has some symmetry - If we explicitly break symmetry by adding symmetry breaking perturbations (e.g. adding magnetic impurities to break time reversal) - Different SPT order can be smoothly connected ### **Topological Insulators** #### Realization Bernevig, Zhang (2006); Bernevig, Hughes, Zhang (2006); Konig et al (2007); Fu, Kane, Mele (2007); Moore, Balents (2007); Roy (2009); Hsieh, et al (2008); Chen, et al (2009); Classification Kitaev (2009); Schnyder et al (2009) # Symmetry protected topological order in spin / boson systems? - Gapped quantum phases at zero T - system has some symmetry - ground state does not break symmetry - Unusual property on the boundary - If symmetry is explicitly broken, can be smoothly connected to a trivial phase ### Example: Haldane phase and AKLT Haldane (1983); Affleck, Kennedy, Lieb, Tasaki, (1987) spin 1 $$H = \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + \frac{1}{3} \left(\vec{S}_{i} \cdot \vec{S}_{i+1} \right)^{2}$$ ightharpoonup Singlet $|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle$ ### **AKLT** model - Spin rotation symmetry - Bulk gapped, does not break symmetry - effective spin ½ degenerate edge state | Properties | Topological
Insulator | AKLT chain | |--------------------------------------|---------------------------------------|---------------------| | Has certain symmetry | Time reversal and charge conservation | Spin rotation | | Ground state does not break symmetry | | | | Gapped bulk | | | | Gapless / degenerate edge | Gapless | Degenerate (spin ½) | | Can be gapped by breaking symmetry | Magnetic field / superconductivity | Magnetic field | # What other SPT phases exist in 1D spin chains? ### Matrix Product State rep. of AKLT $$|\psi\rangle = \sum_{i_1i_2...i_n} Tr(A^{i_1}A^{i_2}...A^{i_n})|i_1i_2...i_n\rangle$$ $$A_x = \sigma_x, A_y = \sigma_y, A_z = \sigma_z$$ $$|x\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |-1\rangle), |y\rangle = \frac{-i}{\sqrt{2}}(|1\rangle + |-1\rangle), |z\rangle = -|0\rangle$$ $$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$ Affleck, Kennedy, Lieb, Tasaki, (1987); D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007) spin rotation symmetry $$\prod U^k |\psi\rangle = |\psi\rangle$$ $$U = e^{i\theta \vec{n} \cdot \vec{S}}$$ — M-1 $$\sum_{j} U_{ij}A^{j} = MA^{i}M^{-1}$$ symmetry $$\prod U^k |\psi\rangle = |\psi\rangle$$ $U = e^{i\theta\vec{n}\cdot\vec{S}}$ $$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$ $$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$ $$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$ $$= -\text{M} - \text{M}^{-1} - \text{M} - \text{M}^{-1} - \text{M}$$ #### **AKLT** $$U=e^{i heta ec{n}\cdotec{S}} \qquad M=e^{i hetaec{n}\cdotec{\sigma}}$$ spin 1 $\qquad ec{\sigma} \qquad$ spin 1/2 Physical degree of freedom Effective edge degree of freedom #### **AKLT** U rotation on spin 1 m rotation on spin 1/2 Symmetry Protected Topological Order More generally symmetry group G $g \in G$ $$U(g) \qquad U(g) \qquad U(g) \qquad U(g) \qquad M^{-1}(g) M(g) \qquad M(g_1)U(g_2) \qquad U(g_1)U(g_2) \qquad U(g_1g_2) \qquad M(g_1)M(g_2) \qquad M^{-1}(g_1g_2) M^{-$$ Fannes, Nachtergaele, R. F. Werner (1992); D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007); Pollmann, Berg, Turner, Oshikawa, (2010) AKLT, spin rotation symmetry $$U_{\vec{n}}(\pi)U_{\vec{n}}(\pi) = e^{i\pi\vec{n}\cdot\vec{S}}e^{i\pi\vec{n}\cdot\vec{S}} = I$$ $$M_{\vec{n}}(\pi)M_{\vec{n}}(\pi) = e^{i\pi\vec{n}\cdot\vec{\sigma}}e^{i\pi\vec{n}\cdot\vec{\sigma}} = -I$$ - Projective representation - different classes cannot be smoothly connected - must be > 1D, degeneracy ### MPS and general 1D SPT All gapped ground states in 1D can be represented as MPS! All gapped MPS transform under symmetry as Symmetry Protected Topological Phase with symmetry G Projective representation of group G Verstraete, Cirac (2006); Hastings (2007); Fannes, Nachtergaele, R. F. Werner (1992); D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac (2007); Turner, Pollmann, Berg (2010); **XC**, Gu, Wen (2011); Schuch, Perez-Garcia, Cirac (2011) ### MPS and general 1D SPT Complete classification of phases in interacting systems | Symmetry | Z ₂ x Z ₂ | Spin rotation | Time Reversal | Z ₂ | |----------|---------------------------------|---------------|---------------|----------------| | d=1 | 1 | 1 | 1 | 0 | - Impossible to achieve by brute force - Provide important numerical tool - Starting point for generalization to higher dimensions ### 2D SPT in spin / boson systems - Bosonic / spin version of topological insulator? - Gapped quantum phases at zero T - system has some symmetry - ground state does not break symmetry - Gapless boundary protected by symmetry ### 2D spin SPT order with Z₂ sym - Exactly solvable model - Bulk is gapped - does not break symmetry - Gapless boundary - need to show that the boundary is gapless under any symmetric interacting perturbation - matrix product operator XC, Liu, Wen (2012) 2 level system |0>, |1> $$\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$ Global Onsite Z₂ symmetry $$\sigma_{x} \stackrel{CZ}{cz} \sigma_{x}$$ $\sigma_{x} \stackrel{CZ}{cz} \sigma_{x}$ $$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$ $$+|10\rangle\langle10| - |11\rangle\langle11|$$ Effective boundary state $$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$ Effective Z₂ symmetry $$+|10\rangle\langle10|-|11\rangle\langle11|$$ $$CZ$$ σ_{x} CZ Must be gapless unless symmetry is broken $$H=-\sum \sigma_z^i\sigma_z^{i+1}$$ symmetry breaking $$H = \sum_{i}^{i} \sigma_{x}^{i} + \sigma_{z}^{i-1} \sigma_{x}^{i} \sigma_{z}^{i+1} \quad \text{gapless}$$ Proven using matrix product state and operator Effective boundary state $$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$ $+|10\rangle\langle10|-|11\rangle\langle11|$ Effective Z₂ symmetry $$CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ \xrightarrow{\sigma_x} CZ$$ $$|0\rangle, |1\rangle$$ $$- \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$ Murg, Cirac, Pirvu, Verstraete (2010) If the boundary state can be both symmetric and gapped Moreover $$\begin{array}{c} & & & & \\ & &$$ Not consistent - Effective boundary state - Effective Z₂ symmetry $$CZ = |00\rangle\langle00| + |01\rangle\langle01|$$ $$+|10\rangle\langle10| - |11\rangle\langle11|$$ $$\sigma_x \underset{CZ}{\sigma_x} \sigma_x \underset{CZ}{\sigma_z}$$ It is not possible to have a gapped boundary state without breaking symmetry ### General 2D SPT with spins / bosons - Systematic construction of 2D SPT with any G - Proves the gapless-ness of symmetric boundary state - Proves nontrivial SPT order in interacting systems | Symmetry | Z ₂ | Charge Conservation (C) | Time
Reversal (T) | C & T | |----------|----------------|-------------------------|----------------------|-------| | d=2 | 1 | ∞ | 0 | 1 | ### Summary - In interacting spin / boson systems - Matrix Product State and classification of 1D symmetry protected topological order - Matrix Product Operator and systematic construction of 2D symmetry protected topological order - Gauge transformation of Matrix Product formalism - Entanglement, localized