SCATTERING AND S-MATRIX

J. Rosner, University of Chicago

University of Edinburgh - November 8, 2016

Part 1: Review of	Part 2: S-matrix and	Part 3: Some simple
scattering theory	related physics	applications
S, T, and K matrices	1-,2-channel examples	Optical analogs
Wave packet scattering	Transmission resonances	Eikonal approximation
Scattering amplitude	Bound states	Diffractive scattering
Partial wave expansion	S wave properties	Adding resonances
Phase shifts	Resonances	Dalitz plot applications
R-matrix	Absorption	Historical notes
Unitarity circle	Inelastic cross section	Example from electronics

For simplicity some of the formalism will be nonrelativistic "In" state $|i\rangle_{\text {in }}$: Free particle in remote past
"Out" state out $\langle j|$: Free particle in remote future S-matrix takes "in" states to "out" (with wave packets: Goldberger and Watson, Scattering Theory, 1964.)

UNITARITY; T AND K MATRICES

$S_{j i} \equiv{ }_{\text {out }}\langle j \mid i\rangle_{\text {in }}$ is unitary: completeness and orthonormality of "in" and "out" states

$$
S^{\dagger} S=S S^{\dagger}=\mathbb{1}
$$

Just an expression of probability conservation
S has a piece corresponding to no scattering
Can write $S=\mathbb{1}+2 i T$
Notation of S. Spanier, BaBar Analysis Document \#303, based on S. U. Chung et al. Ann. d. Phys. 4, 404 (1995). Unitarity of S-matrix $\Rightarrow T-T^{\dagger}=2 i T^{\dagger} T=2 i T T^{\dagger}$.
$\left(T^{\dagger}\right)^{-1}-T^{-1}=2 i \mathbb{1}$ or $\left(T^{-1}+i \mathbb{1}\right)^{\dagger}=\left(T^{-1}+i \mathbb{1}\right)$.
Thus $K \equiv\left[T^{-1}+i \mathbb{1}\right]^{-1}$ is hermitian; $T=K(\mathbb{1}-i K)^{-1}$

WAVE PACKETS

Normalized plane wave states: $\chi_{\vec{q}}=e^{i \vec{q} \cdot \vec{r}} /(2 \pi)^{3 / 2}$
$\left(\chi_{q^{\prime}}, \chi_{\vec{q}}\right)=(2 \pi)^{-3} \int d^{3} \vec{r} e^{i\left(\vec{q}-q^{\prime}\right) \cdot \vec{r}}=\delta^{3}\left(\vec{q}-\overrightarrow{q^{\prime}}\right)$.
Expansion of wave packet: $\psi_{\vec{p}}(\vec{r}, t=0)=\int d^{3} q \chi_{\vec{q}} \phi(\vec{q}-\vec{p})$ where ϕ is a weight function peaked around 0
Fourier transform of $\phi: G(\vec{r})=\int d^{3} k e^{i \vec{k} \cdot \vec{r}} \phi(\vec{k})$
$\psi_{\vec{p}}(\vec{r}, t=0)=\int d^{3} q \chi_{\vec{q}-\vec{p}+\vec{p}} \phi(\vec{q}-\vec{p})=\chi_{\vec{p}} G(\vec{r})$.
Norm: $(\psi, \psi)=\int d^{3} q|\phi(\vec{q}-\vec{p})|^{2}=\frac{1}{(2 \pi)^{3}} \int d^{3} r|G(\vec{r})|^{2}=1$.
$\psi_{\vec{p}}(\vec{r}, t)=e^{-i H t} \psi_{\vec{p}}(\vec{r}, 0)=\int d^{3} q \phi(\vec{q}-\vec{p}) \chi_{\vec{q}} e^{-i E_{q} t}$,
where $E_{q}=q^{2} / 2 m(\mathrm{NR})$ or $\left(q^{2}+m^{2}\right)^{1 / 2}$ (Relativistic).

WAVE PACKET SCATTERING

E. Merzbacher, Quantum Mechanics (3rd Ed. Ch. 13) has a good discussion which will be abbreviated here
Free Hamiltonian: $H_{0}=p^{2} /(2 m)$; full: $H=H_{0}+V$
Packet: $\psi_{\vec{k}_{0}}(\vec{r}, 0)=\frac{1}{(2 \pi)^{3 / 2}} \int d^{3} k \phi\left(\vec{k}-\vec{k}_{0}\right) e^{i \vec{k} \cdot\left(\vec{r}-r_{0}\right)}, \phi(\vec{k})$ centered about 0 , width Δk, center of packet \vec{r}_{0}
At $t=0$ packet is headed to target, momentum \vec{k}_{0}, distance \vec{r}_{0} from it; want its shape for large t
Expand $\psi_{\vec{k}_{0}}(\vec{r}, 0)$ in eigenfunctions of H :
$\psi_{\vec{k}_{0}}(\vec{r}, 0)=\sum_{n} c_{n} \psi_{n}(\vec{r}) \quad, \quad \psi_{\vec{k}_{0}}(\vec{r}, t)=\sum_{n} c_{n} \psi_{n}(\vec{r}) e^{-i E_{n} t}$.
Need to find the eigenfunctions $\psi_{n}(\vec{r})$

GREEN'S FUNCTION

$\left(\frac{\bar{p}^{2}}{2 m}+V\right) \psi=E \psi$, or with $k^{2} \equiv 2 m E, U \equiv 2 m V$,
Schrödinger equation is $\left(\nabla^{2}+k^{2}\right) \psi=U \psi$
Define a Green's function $G\left(\vec{r}, \overrightarrow{r^{\prime}}\right)$ satisfying

$$
\left(\nabla^{2}+k^{2}\right) G\left(\vec{r}, \overrightarrow{r^{\prime}}\right)=-4 \pi \delta\left(\vec{r}-\overrightarrow{r^{\prime}}\right)
$$

$\psi(\vec{r})=-\frac{1}{4 \pi} \int d^{3} r^{\prime} G\left(\vec{r}, \overrightarrow{r^{\prime}}\right) U\left(\overrightarrow{r^{\prime}}\right) \psi\left(\overrightarrow{r^{\prime}}\right):$ particular sol'n.
Add solution $e^{i \vec{k} \cdot \vec{r}} /(2 \pi)^{3 / 2}$ of homogeneous equation:
$\psi_{\vec{k}}(\vec{r})=\frac{e^{i \vec{k} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}-\frac{1}{4 \pi} \int d^{3} r^{\prime} G\left(\vec{r}, \overrightarrow{r^{\prime}}\right) U\left(\overrightarrow{r^{\prime}}\right) \psi_{\vec{k}}\left(\overrightarrow{r^{\prime}}\right)$
Differential eqn. + boundary condx. \Leftrightarrow integral equation

SPHERICAL WAVES

Two Green's functions: $G_{ \pm}\left(\vec{r}, \overrightarrow{r^{\prime}}\right)=\frac{e^{ \pm i k\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}}{\left|\vec{r}-\vec{r}^{\prime}\right|}$ with $(+,-) \Leftrightarrow$ (outgoing,incoming) spherical waves Can take $\overrightarrow{r^{\prime}}=0 ; G_{ \pm}$are solutions for $\vec{r} \neq 0$
For $\vec{r}=0$, integrate test function $f(\vec{r})$ times $\left(\nabla^{2}+k^{2}\right) G$ over small region surrounding the origin; use Gauss' Law Green's functions $G_{ \pm}$define two sets of solutions:
$\psi_{\vec{k}}^{(\pm)}(\vec{r})=\frac{e^{i \vec{k} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}-\frac{1}{4 \pi} \int d^{3} r^{\prime} \frac{e^{ \pm i k\left|\vec{r}-\vec{r}^{\prime}\right|}}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} U\left(\overrightarrow{r^{\prime}}\right) \psi_{\vec{k}}^{(\pm)}\left(\overrightarrow{r^{\prime}}\right)$
where r^{\prime} is limited if U is of short range
Expand $k\left|\vec{r}-\overrightarrow{r^{\prime}}\right|=k \sqrt{r^{2}-2 \vec{r} \cdot \overrightarrow{r^{\prime}}+r^{\prime 2}} \simeq k r\left(1-\frac{\vec{r} \cdot r^{\prime}}{r^{2}}+\ldots\right)$

$$
1 /\left|\vec{r}-\overrightarrow{r^{\prime}}\right| \simeq 1 / r
$$

SCATTERING AMPLITUDE

$\psi_{\vec{k}}^{(\pm)}(\vec{r}) \sim \frac{e^{i \vec{k} \cdot \vec{r}}}{(2 \pi)^{3 / 2}}-\frac{1}{4 \pi r} e^{ \pm i k r} \int d^{3} r^{\prime} U\left(\overrightarrow{r^{\prime}}\right) \psi_{\vec{k}}^{(\pm)}\left(\overrightarrow{r^{\prime}}\right) e^{\mp i \overrightarrow{k^{\prime}} \cdot \overrightarrow{r^{\prime}}}$

$$
\overrightarrow{k^{\prime}} \equiv k \hat{r}
$$

Define $f_{\vec{k}}^{(\pm)}(\hat{r}) \equiv-\left[\frac{(2 \pi)^{3 / 2}}{4 \pi}\right] \int d^{3} r^{\prime} U\left(\overrightarrow{r^{\prime}}\right) \psi_{\vec{k}}^{(\pm)}\left(\overrightarrow{r^{\prime}}\right) e^{\mp i \overrightarrow{k^{\prime}} \cdot \overrightarrow{r^{\prime}}}$
Then $\psi_{\vec{k}}^{(\pm)}(\vec{r}) \sim(2 \pi)^{-3 / 2}\left[e^{i \vec{k} \cdot \vec{r}}+\frac{e^{ \pm i k r}}{r} f_{\vec{k}}^{(\pm)}(\hat{r})\right] \quad(r \rightarrow \infty)$
Differential cross $/ \mathrm{d} \Omega$ Initial flux per unit area $I_{0} \sim k$

Final fluence I in cone of solid angle $d \Omega$:

$$
I \sim k\left(r^{2} d \Omega\right)\left|f_{\vec{k}}^{(\pm)}(\hat{r}) / r\right|^{2}
$$

$d \sigma / d \Omega=I / I_{0}=\left|f_{\vec{k}}^{(\pm)}(\hat{r})\right|^{2} \equiv$ differential cross section

PHASE SHIFTS δ_{ℓ}

Large- r Schr. eq. solution: $\psi \sim e^{i k r \cos \theta}+f_{k}(\theta) \frac{e^{i k r}}{r}(1)$
Connect with central-force solutions $\frac{u_{\ell, k}(r)}{r} Y_{\ell}^{m}(\theta, \phi)$ where $\left[-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+2 m V(r)-k^{2}\right] u_{\ell, k}(r)=0 \quad\left(k^{2} \equiv 2 m E\right)$
Free $u_{\ell, k}(r) / r \equiv R_{\ell, k}(r)$ solutions $j_{\ell}(k r)$, $n_{\ell}(k r)$
Outside range of $V: R_{\ell, k}(r)=A_{\ell} j_{\ell}(k r)+B_{\ell} n_{\ell}(k r)$
As $k r \rightarrow \infty R_{\ell, k}(r) \rightarrow A_{\ell} \frac{\sin (k r-\ell \pi / 2)}{k r}-B_{\ell} \frac{\cos (k r-\ell \pi / 2)}{k r}$
For $\tan \delta_{\ell} \equiv-B_{\ell} / A_{\ell}, R_{\ell, k}(r) \sim \frac{\sin \left(k r-\ell \pi / 2+\delta_{\ell}\right)}{k r}$ as $k r \rightarrow \infty$
Then $\psi \rightarrow \sum C_{\ell}(k) P_{\ell}(\cos \theta)\left[\sin \left(k r-\ell \pi / 2+\delta_{\ell}\right)\right] / r(2)$
Bauer: $e^{i k r \cos \theta}=\sum_{\ell=0}^{\infty} i^{\ell}(2 \ell+1) j_{\ell}(k r) P_{\ell}(\cos \theta)(3)$

PARTIAL WAVE EXPANSION ${ }^{996}$

Compare incoming spherical wave coefficients in $(2,3)$:
$\psi \simeq \sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} e^{i \delta_{\ell}}\left[\sin \left(k r-\ell \pi / 2+\delta_{\ell}\right)\right] P_{\ell}(\cos \theta) / k r$
Compare coeff. of outgoing spherical wave in this and (1):

$$
\begin{aligned}
f_{k}(\theta) & =\sum_{\ell=0}^{\infty}(2 \ell+1)\left[\left(e^{2 i \delta_{\ell}(k)}-1\right) /(2 i k)\right] P_{\ell}(\cos \theta) \\
& =k^{-1} \sum_{\ell=0}^{\infty}(2 \ell+1) e^{i \delta_{\ell}(k)} \sin \delta_{\ell}(k) P_{\ell}(\cos \theta)
\end{aligned}
$$

Total cross section:
$\sigma=\int d \Omega \frac{d \sigma}{d \Omega}=\int d \Omega\left|f_{k}(\theta)\right|^{2}=\frac{4 \pi}{k^{2}} \sum_{\ell=0}^{\infty}(2 \ell+1) \sin ^{2} \delta_{\ell}(k)$ using $\int d \Omega P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta)=4 \pi \delta_{\ell \ell^{\prime}} /(2 \ell+1)$
Optical theorem: $\sigma=(4 \pi / k) \operatorname{lm} f_{k}(0)$
Convenient to define $f_{\ell}(k) \equiv\left[e^{2 i \delta_{\ell}(k)}-1\right] /(2 i k)$
Then optical theorem takes the form $\operatorname{Im} f_{\ell}(k)=k\left|f_{\ell}(k)\right|^{2}$

THE R-MATRIX

Want a real function reducing to $f_{\ell}(k)$ for small f
Stereographic projection: $R_{\ell}(k) \equiv(1 / k) \tan \delta_{\ell}(k)$

$$
\begin{aligned}
& \int_{\ell} \quad f_{\ell}(k)=k^{-1} e^{i \delta_{\ell}(k)} \sin \delta_{\ell}(k) \\
& =1 / k \text { (maximum) for } \delta_{\ell}(k)=\pi \\
& f_{\ell}(k)=\frac{\left[1+i k R_{\ell}(k)\right] R_{\ell}(k)}{1+k^{2} R_{\ell}^{2}(k)} \\
& S_{\ell}(k) \equiv e^{2 i \delta_{\ell}(k)}=\frac{1+i k R_{\ell}(k)}{1-i k R_{\ell}(k)}
\end{aligned}
$$

Many channels: real R is useful because it has eigenvalues S-matrix is useful because it is unitary: $S^{\dagger} S=1$ $S=\mathbb{1}+2 i T=(\mathbb{1}+i K) /(\mathbb{1}-i K)$

UNITARITY CIRCLE

For single channel, phase shift defined by $S=e^{2 i \delta}$.
Then $T=(S-\mathbb{1}) /(2 i)=$ $e^{i \delta} \sin \delta ; K=\tan \delta=k R$.
The T amplitude must lie on boundary of the circle
For inelastic processes

$$
T=\left(\eta e^{2 i \delta}-\mathbb{1}\right) /(2 i), \quad \eta<1 .
$$

Consider scattering in one dimension with no reflections
Class of potentials giving rise to full transmission of a plane wave $\psi(x) \sim e^{i k x}$ incident from the left, so that as $x \rightarrow \infty, \psi(x) \rightarrow S(k) e^{i k x}$ with $|S(k)|=1$. Take $2 m=1$.

1,2-CHANNEL EXAMPLES

These potls. have bound states at energies $E_{j}=-\alpha_{j}^{2}(1 \leq$ $j \leq N$ and one can write $S(k)=\Pi_{j=1}^{N}\left[\left(i k-\alpha_{j}\right) /(i k+\right.$ $\left.\left.\alpha_{j}\right)\right]=e^{2 i \delta}$, where $\delta=\sum_{j=1}^{N} \delta_{j}$ and $\tan \delta_{j}=\alpha_{j} / k$.

Simplest one-level potential: $V(x)=-2 \alpha^{2} / \cosh ^{2} \alpha\left(x-x_{0}\right)$ One-level K-matrix is just $K=\alpha / k$. If we define $K_{j}=$ α_{j} / k then $K \rightarrow \sum_{j=1}^{N} K_{j}$ as $k \rightarrow \infty$, but not in general.
Now let the potential permit reflections, so that

$$
\begin{gathered}
\psi(x) \rightarrow A e^{i k x}+B e^{-i k x} \quad(x \rightarrow-\infty) \\
\psi(x) \rightarrow F e^{i k x}+G e^{-i k x} \quad(x \rightarrow \infty)
\end{gathered}
$$

With channel $1 \sim e^{i k x}$, channel $2 \sim e^{-i k x}$, can write

$$
F=S_{11} A+S_{12} G ; \quad B=S_{21} A+S_{22} G
$$

TRANSMISSION RESONANCES ${ }^{\text {º }}$

The incoming and outgoing fluxes must be equal: $|F|^{2}+$ $|B|^{2}=|A|^{2}+|G|^{2}$. This implies $S^{\dagger} S=S S^{\dagger}=1$.
Square well, $V(x)=-V_{0}$ for $|x| \leq a, V(x)=0$ for $|x|>a$ shows transmission resonances: $\left|S_{11}\right|=\left|S_{22}\right|=1$ and $S_{12}=S_{21}=0$ when $2 k^{\prime} a=n \pi\left(k^{\prime}=\sqrt{2 m\left(E+V_{0}\right)}\right)$. Merzbacher, Quantum Mechanics (3rd ed.), p. 109:

$$
\begin{aligned}
& \begin{array}{c}
S_{11}=S_{22}= \\
\eta e^{2 i \delta},
\end{array} \\
& { }_{0.75} i S_{12}=i S_{21}= \\
& { }_{080} \sqrt{1-\eta^{2}} e^{2 i \delta} \text {. } \\
& \text { Ticks: } \\
& \begin{array}{l}
\text { equal } \Delta E / V_{0} \\
\text { intervals }
\end{array}
\end{aligned}
$$

DEEP WELL EXAMPLE

Another example from Merzbacher, 3rd ed., p. 109.

Well much deeper; resonances more closely spaced in E.

S-MATRIX POLES AND BOUND STATES 15/36

Write reflectionless $S(k)=\Pi_{j=1}^{N}\left[\frac{i-\alpha_{j} / k}{i+\alpha_{j} / k}\right]=\frac{F(k)}{F(-k)}=e^{2 i \delta}$
$F(k)=\Pi_{j=1}^{N}\left(i-\alpha_{j} / k\right)$ is an example of a Jost function Zeroes of Jost function at $k=-i \alpha_{j}$ correspond to S matrix poles at $k=i \alpha_{j}$ (bound states): wave function $e^{i k x} \rightarrow e^{-\alpha_{j} x}$ as $x \rightarrow \infty$ and $e^{-i k x} \rightarrow e^{\alpha_{j} x}$ as $x \rightarrow-\infty$ Phase of the Jost function is just the phase shift Generalizes to all $\ell: S_{\ell}(k)=F_{\ell}(k) / F_{\ell}(-k)=e^{2 i \delta_{\ell}}$ R. Newton, J. Math. Phys. 1, 319 (1960); P. Roman, Advanced Quantum Theory, Addison-Wesley, 1964 Useful in proving Levinson's Theorem: $\delta_{\ell}(k=0)-\delta(k=$ $\infty)=n_{\ell} \pi$, where n_{ℓ} is the number of bound states with angular momentum ℓ

RAMSAUER-TOWNSEND EFFECT

The unitarity circle

S-wave scattering amplitude $f_{0}(k)=\left(e^{2 i \delta}-1\right) /(2 i k)$ vanishes at $\delta=\pi ; \sigma_{\text {el }}=0$ there
This is seen in scattering of electrons on rare gas atoms where $\sigma \simeq 0$ around 1 eV
S. Geltman, Topics in Atomic

Collision Theory, Academic Press, NY, 1969, p. 23
Effect is used to produce monochromatic neutron beams; $\sigma\left(n-{ }^{56} \mathrm{Fe}\right)$ has a dip at 24 keV , leading to transparency [P. S. Barbeau +, Nucl. Inst. Meth. A 574, 385 (2007)] Dip in S-wave $\pi \pi$ scattering near 1 GeV due to opening of K \bar{K} threshold: S. M. Flatté et al., PL B38, 232 (1972)

$I=0$ PION-PION SCATTERING ${ }^{7 / 6}$

 R.Garcia-Martin et al., Phys. Rev. D 83, 074004 (2011):

S-wave phase shift $\delta_{0}^{0} \uparrow \quad$ S-wave inelasticity $\eta_{0}^{0}(s)$ Here s is the square of the center-of-mass energy
Phase shift δ_{0}^{0} goes rapidly through π just below 1 GeV and S-wave elastic $\pi \pi$ cross section vanishes there; η_{0}^{0} dips sharply at inelastic threshold for $\pi \pi \rightarrow K \bar{K}$

S-WAVES NEAR THRESHOLDS

Cusps and dips: J. L. Rosner, PR D 74, 076006 (2006) $\pi \pi \rightarrow K \bar{K}$ only one example where new threshold is associated with a dip in the elastic cross section

$$
R=\frac{\sigma\left(e^{+} e^{-}\right) \rightarrow \text { hadrons }}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad 3 \pi^{+} 3 \pi^{-} \text {photoproduction }
$$

SCATTERING LENGTH

For small $k, \delta_{\ell}(k) \sim k^{2 \ell+1}$ (Merzbacher, 3rd ed., p. 309)
In particular, $\delta_{0} \rightarrow-k a$ as $k \rightarrow 0 ; a=$ scattering length Scattering length approximation to the S-matrix:
$S=e^{2 i \delta} \simeq \frac{1+i \delta}{1-i \delta}=\frac{1-i k a}{1+i k a}=\frac{1 / a-i k}{1 / a+i k} ;$ pole at $k=i / a$
Bound state at $k=i \alpha$ for $a=1 / \alpha>0$; example is deuteron
When a is large and negative one has a virtual state, as in ${ }^{1} S_{0}$ nucleon-nucleon scattering near threshold
Effective range r_{0} : the next term in an expansion $k \cot \delta=-(1 / a)+\left(r_{0} k^{2} / 2\right)$
No linear term in k because $\delta(-k)=-\delta(k)$

RELATIVISTIC NORMALIZATION

Cross section in terms of invariant matrix element $\mathcal{M}_{f i}$:

$$
\frac{d \sigma}{d \Omega}=\frac{1}{(8 \pi)^{2} s}\left(\frac{q_{f}}{q_{i}}\right)\left|\mathcal{M}_{f i}\right|^{2}=|f(\Omega)|^{2}
$$

$q_{f, i}=\left(\right.$ final, initial) c.m. momenta; $s=E_{\text {c.m. }}^{2}$
Partial waves: $f(\Omega)=\frac{1}{q_{i}} \sum_{\ell}(2 \ell+1) T^{\ell}(s) P_{\ell}(\cos \theta)$
$T_{\ell}(s)=\frac{\eta_{e} e^{2 i \delta_{\ell-1}}}{2 i}$ satisfies unitarity for $\eta_{\ell} \leq 1$
Lorentz-invariant transition amplitude: $T_{f i}=\sqrt{\rho_{f}} \hat{T}_{f i} \sqrt{\rho_{i}}$; $\rho_{i, f}=2$-body phase sp. factors $2 q_{i, f} / m(\rightarrow 1$ as $m \rightarrow \infty)$.
$\mathcal{M}_{f i}=16 \pi \hat{T}_{f i}(\Omega)$; for elastic scattering $\hat{T}^{\ell}=\frac{1}{\rho} e^{i \delta} \sin \delta_{\ell}$.

RESONANCES

In partial wave $\ell: \quad \sigma_{\ell}=\left(4 \pi / k^{2}\right) \sin ^{2} \delta_{\ell}(2 \ell+1)$
When $\delta=\pi / 2, \sigma_{\ell}$ is maximum
Can represent any $S_{\ell}(k)=e^{2 i \delta_{\ell}}=(a-i b) /(a+i b)$
At a resonance $S_{\ell}=-1$ so $a=0, b=\mathrm{constant}$ Normalization choice: $a=E-E_{0}, b=\Gamma / 2$, defining Γ. We shall see that Γ must be positive
Then $S_{\ell}(k)=\left(E-E_{0}-i \Gamma / 2\right) /\left(E-E_{0}+i \Gamma / 2\right)$
$f_{\ell}(k)=\frac{S_{\ell}(k)-1}{2 i k}=\frac{1}{2 i k}\left[\frac{-i \Gamma}{E-E_{0}+i \Gamma / 2}\right]=-\frac{\Gamma / 2 k}{E-E_{0}+i \Gamma / 2}$
$\sigma_{\ell}(\mathrm{res})=4 \pi(2 \ell+1)\left|f_{\ell}(k)\right|^{2}=\frac{4 \pi}{k^{2}}(2 \ell+1) \frac{\Gamma^{2}}{4\left(E-E_{0}\right)^{2}+\Gamma^{2}}$
(Breit-Wigner resonance)

BREIT-WIGNER INTERPRETATION

$$
\begin{aligned}
& \psi_{k}^{(+)}(r, \theta) \simeq e^{i \delta_{\ell}} \sin \delta_{\ell} g_{\ell, k}(r, \theta) \\
& \simeq \frac{\Gamma / 2}{E_{0}-E-i \Gamma / 2} g_{\ell, k}(r, \theta)(g \text { slowly varying })
\end{aligned}
$$

Wave packet with width $\Delta E \gg \Gamma$:
$\psi(t=0)=\int_{\Delta E} \rho(E) \frac{\Gamma / 2}{E_{0}-E-i \Gamma / 2} g_{\ell, k}(r, \theta)$
$\mathrm{E}_{0}-\Gamma / 2 \dagger \mathrm{E}_{0}{\stackrel{E_{0}+\Gamma / 2}{ } \mathrm{E}}(\rho(E)$ peaked wt. function)
Then $\psi(t) \simeq \rho\left(E_{0}\right) g_{\ell, k_{0}}(r, \theta) \int_{\Delta E} \frac{\Gamma / 2}{E_{0}-E-i \Gamma / 2} e^{-i E t} d E$ which can be performed for $t>0$ by contour integration Close contour in lower plane around $E=E_{0}-i \Gamma / 2$ pole Then find $|\psi(t) / \psi(0)|^{2}=e^{-\Gamma t}$ so $1 / \Gamma$ is "lifetime"; $\Gamma>0$

ABSORPTION

$\operatorname{Had} \psi_{k}^{(+)}(r, \theta)=\sum_{\ell} \frac{a_{\ell}(k) P_{\ell}(\cos \theta)}{2 i k r}\left[(-i)^{\ell} e^{i k r} e^{i \delta \ell}-i^{\ell} e^{-i k r} e^{-i \delta_{\ell}}\right]$
Let outgoing partial wave be attenuated by $\eta_{\ell}, 0 \leq \eta_{l} \leq 1$
$\psi_{k}^{(+)}(r, \theta)=\sum_{\ell} \frac{a_{\ell}(k) P_{\ell}(\cos \theta)}{2 i k r}\left[(-i)^{\ell} e^{i k r} \eta_{\ell} e^{i \delta \ell}-i^{\ell} e^{-i k r} e^{-i \delta_{\ell}}\right]$
All previous derivations go through as before, but now
$f_{k}(\theta)=\sum_{\ell} P_{\ell}(\cos \theta)(2 \ell+1) f_{\ell}(k) ; \quad f_{\ell}(k)=\frac{\left[\eta e^{2 i \delta_{\ell}}-1\right]}{2 i k}$
Note that if $\eta_{\ell}<1$ then $\operatorname{Im} f_{\ell}(k) \neq k\left|f_{\ell}(k)\right|^{2}$
Optical theorem $\sigma_{T}=(4 \pi / k) \operatorname{Im} f(\theta=0)$ still holds Elastic cross section $\sigma_{\mathrm{el}}=\int d \Omega \frac{d \sigma}{d \Omega}=\int d \Omega\left|f_{k}(\theta)\right|^{2}$

$$
=\sum_{\ell}(2 \ell+1)\left(\pi / k^{2}\right)\left(\eta_{\ell}^{2}+1-2 \eta_{\ell} \cos 2 \delta_{\ell}\right)
$$

and we need the inelastic cross section $\sigma_{\mathrm{in}}=\sigma_{T}-\sigma_{\mathrm{el}}$

INELASTIC CROSS SECTION ${ }^{2 / 2 / 86}$

Compare $e^{ \pm i k r}$ fluxes $I=\int d \vec{\sigma} \cdot \vec{j}(d \vec{\sigma}=$ area element; $\vec{j}=$ probability current); find in each partial wave
$I_{\text {in }}=(2 \ell+1) \pi / m k ; \quad I_{\text {out }}=\eta_{\ell}^{2}(2 \ell+1) \pi / m k$
so $I_{\text {in }}-I_{\text {out }}=\sum_{\ell}(\pi / m k)(2 \ell+1)\left(1-\eta_{\ell}^{2}\right)$
Incident particles in a time interval $d t$ sweeping out a volume V impinging on an area $A: N=v_{0} d t A$, so flux per unit time per unit area is $I_{0}=N /(A d t)=v_{0}=k / m$
Then $\sigma_{\text {in }}=\frac{I_{\text {in }}-I_{\text {out }}}{I_{0}}=\sum_{\ell}(2 \ell+1)\left(\pi / k^{2}\right)\left(1-\eta_{\ell}^{2}\right)$
$\sigma_{T}=\sigma_{\mathrm{in}}+\sigma_{\mathrm{el}}=\sum_{\ell}(2 \ell+1)\left(2 \pi / k^{2}\right)\left(1-\eta_{\ell} \cos 2 \delta_{\ell}\right)$
$\operatorname{Im} f_{\ell}(k)=\frac{1-\eta_{\ell} \cos 2 \delta_{\ell}}{2 k}$ so $\operatorname{Im} f_{k}(0)=\sum_{\ell}(2 \ell+1) \frac{1-\eta_{\ell} \cos 2 \delta_{\ell}}{2 k}$ which is just $k \sigma_{T} /(4 \pi)$, proving optical theorem

OPTICAL ANALOGUES

Inelastic scattering occurs whenever $\eta_{\ell}<1$
Always accompanied by elastic scattering:

$$
1+\eta_{\ell}^{2}-2 \eta_{\ell} \cos 2 \delta_{\ell} \neq 0 \text { when } \eta_{\ell}<1
$$

Black disk: $\eta_{\ell}=0$ for $\ell \leq k R ; \eta_{\ell}=1, \delta_{\ell}=0$ for $\ell>k R$
For high energies such that $k R \gg 1$, where R is the range of scattering, can expect many partial waves to contribute, and $f_{\ell}(k)$ is fairly continuous in ℓ and k. It is then convenient to define the impact parameter $b \equiv(\ell+1 / 2) / k$ and replace \sum_{ℓ} by $k \int d b$.
Then for black disk $\sigma_{\mathrm{in}}=\sigma_{\mathrm{el}}=\pi R^{2}, \quad \sigma_{T}=2 \pi R^{2}$
Define momentum transfer $t=-q^{2} \equiv-2 k^{2}(1-\cos \theta)$
Will express near-forward scattering in terms of b and t

EIKONAL APPROXIMATION ${ }^{2036}$

Large- ℓ Legendre polynomials near forward direction:

$$
P_{\ell}(\cos \theta) \simeq J_{0}\left[\left(\ell+\frac{1}{2}\right) \sqrt{2(1-\cos \theta)}\right]=J_{0}(b q)
$$

With $h(b, k) \equiv 1-\eta_{\ell} e^{2 i \delta_{\ell}}$ and $\sum_{\ell}(2 \ell+1) \simeq 2 \int \ell d \ell$:
$f_{k}(\theta)=\sum_{\ell} P_{\ell}(\cos \theta)(2 \ell+1)\left(\eta_{\ell} e^{2 i \delta_{\ell}}-1\right) /(2 i k)$

$$
\simeq i k \int_{0}^{\infty} b d b J_{0}(b q) h(b, k)
$$

Black sphere: $h(b, k)=1(b \leq R) ; h(b, k)=0(b>R)$

$$
f_{k}(\theta)=i k \int_{0}^{R} b d b J_{0}(b q)
$$

Now $J_{0}(x)=\left(\frac{1}{x} \frac{d}{d x}\right)\left[x J_{1}(x)\right]$
so $f_{k}(\theta)=\frac{i k}{q^{2}} \int_{0}^{q R} d x \frac{d}{d x}\left[x J_{1}(x)\right]=\frac{i k R}{q} J_{1}(q R)$

DIFFRACTIVE SCATTERING

By the optical theorem, can write $\sigma_{T}=(4 \pi) \operatorname{Im} f_{k}(0)=$ $2 \pi R^{2}$ in agreement with previous results
Differential cross section is a diffraction pattern:

$$
\frac{d \sigma}{d \Omega}=|f|^{2}=\frac{k^{2} R^{2}}{q^{2}}\left[J_{1}(q R)\right]^{2}
$$

Or for small $t, \frac{d \sigma}{d|t|} \simeq \frac{\pi R^{4}}{4}\left(1+\frac{R^{2} t}{4}\right)$
Totem at $(7,8)$ TeV LHC (M. Berretti, Proc. of Diffraction 2014, AIP Conf. Proc. 1654 (2015) 040001): $\sigma_{T}(p p) \simeq$ $(98,102) \mathrm{mb}, \Leftrightarrow R=(1.25,1.27) \mathrm{fm}\left[\sigma_{\mathrm{el}} \simeq 25 \mathrm{mb}\right]$
$R^{2} / 4 \simeq 10 \mathrm{GeV}^{-2}$ but measured $|t|$ coeff. $\simeq 19 \mathrm{GeV}^{-2}$
Proton has an "edge": M. M. Block +, PR D 91, 011501; JLR, PR D 90, 117902 (2014)

PROTON EDGE

$f_{k}(\theta)=i k \int_{0}^{\infty} b d b J_{0}(q b) h(b, l) ; \quad J_{0}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i z \cos \phi} d \phi$ With $b=|\vec{b}|, q=|\vec{q}|, \vec{q} \cdot \vec{b}=q b \cos \phi, d^{2} \vec{q}=b d b d \phi$, can write $\quad f_{k}(\theta)=\frac{i k}{2 \pi} \int d^{2} \vec{b} e^{i \vec{q} \cdot \vec{b}} h(b, k)$
Then $\frac{d \sigma}{d|t|}=\frac{\pi}{k^{2}} \frac{d \sigma}{d \Omega}=\frac{\pi}{k^{2}}\left|f_{k}(\theta)\right|^{2} ; \quad \sigma_{\mathrm{el}}=\int d|t| \frac{d \sigma}{d|t|}=\frac{1}{\pi} \int d^{2} \vec{q} \frac{d \sigma}{d|t|}$ so one finds $\quad \sigma_{\mathrm{el}}=2 \pi \int b d b|h(b, k)|^{2}$;

$$
\sigma_{T}=\frac{4 \pi}{k} \operatorname{Im} f_{k}(0)=4 \pi \int b d b \operatorname{Re} h(b, k)
$$

(M. Block, Physics Reports 436, 71 (2006), Chapter 8) Let $h=1(b<R), \quad 0(R>b+\Delta)$, interpolate linearly $\sigma_{T}-2 \sigma_{\mathrm{el}}=(\pi \Delta / 3)(2 R+\Delta) \Rightarrow \Delta \simeq 1.26 \mathrm{fm}$ at 8 TeV , near QCD string-breaking distance [JLR, PL B 385, 293 (1996); G. Bali +, PR D 71, 114513 (2005)]

ADDING RESONANCES

Breit-Wigner: $T(E)=e^{i \delta} \sin \delta \simeq \frac{m_{0} \Gamma(m)}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)}$;
$\Gamma(m)=\Gamma_{0}\left(\frac{\rho(m)}{\rho_{0}}\right) B_{\ell}\left(q(m), q_{0}\right)^{2} ; \quad \Gamma_{0}, \quad m_{0}=$ nominal resonance width, mass; $B_{\ell}=\ell$-dependent barrier factor.
Corresponding K operator is $K=\frac{m_{0} \Gamma(m)}{m_{0}^{2}-m^{2}}$, i.e., like T but without the imaginary part in the denominator. One has $T=K(\mathbb{1}-i K)^{-1}=(\mathbb{1}-i K)^{-1} K$: Interpret as a geometric series in which $(\mathbb{1}-i K)^{-1}$ describes the rescattering correction to the real operator K.
Expressing T in terms of a real K operator guarantees unitarity of S, but this is lost if $T=T_{B W, 1}+T_{B W, 2}$: no longer expressible in terms of a real K-matrix.
Prescription: Add Breit-Wigner resonances by adding their respective K-matrices: $K=K_{B W, 1}+K_{B W, 2}$.

COMPARING PRESCRIPTIONS ${ }^{0136}$

S-wave $\pi \pi$ scattering with $m_{1}=0.8 \mathrm{GeV}, m_{2}=1.2$ $\mathrm{GeV}, \Gamma_{1}=\Gamma_{2}=0.2 \mathrm{GeV}$, points every 20 MeV (blue below 1 GeV , red above 1 GeV). Adding T-matrices gives an amplitude outside unitarity circle; adding K-matrices respects unitarity.

RESONANCE SUMS: INTENSITIES

Sum of two identical resonances gives unequal peak heights (violating unitarity limit $|T|^{2} \leq 1$) with $T=T_{1}+T_{2}$ prescription. Both peaks reach the unitarity limit with $K=K_{1}+K_{2}$ prescription.

DIFFERENT WIDTHS

$$
m=(0.9,0.98) \mathrm{GeV}, \Gamma=(0.4,0.04) \mathrm{GeV} \text {, every } 4 \mathrm{MeV}
$$

DIFFERENT $\Gamma:$ INTENSITIES ${ }^{3338}$

Sum of two resonances with very different widths gives huge violation of unitarity limit $|T|^{2} \leq 1$ with $T=T_{1}+T_{2}$ prescription. Both peaks reach unitarity limit with $K=$ $K_{1}+K_{2}$ prescription.

DALITZ PLOT APPLICATIONS

Three-body decay $A \rightarrow B+C+D$: Describe final-state interactions (pairwise) of $B+C, B+D, C+D$.

Watson's Theorem: Final-state phase of each subsystem is that of elastic scattering in that subsystem.
This can be achieved by multiplying the "bare" matrix element for the decay by the same correction factor which converts K to a unitary amplitude: $T=K(\mathbb{1}-i K)^{-1}$ [Heitler, 1944; Dalitz, RMP 33, 471 (1961)], so $\mathcal{M}_{f i} \rightarrow$ $\mathcal{M}_{f i}\left(\mathbb{1}-i K_{B C}\right)^{-1}\left(\mathbb{1}-i K_{B D}\right)^{-1}\left(\mathbb{1}-i K_{C D}\right)^{-1}$ [Aitchison, Nucl. Phys. A 189, 417 (1972)].
This is simple as long as $B+C, B+D$, and $C+D$ are not "fed" by other inelastic channels, but the K-matrix should take care of them. There may also be intrinsic phases between the two-body subsystems and the bachelor particles not contained in the K-matrix formalism.

HISTORICAL NOTES

S-matrix: Heisenberg [Zeit. Phys. 120, 513 (1943), . . .].
Similar concepts utilized by Tomonaga and Dicke in microwaves (e.g., M. I. T. Radiation Laboratory Series, v. 8, Ch. 5, pp. 130-161).

Smith Chart for impedance matching [P. H Smith, Electronics 12, 29 (1939); 17, 130 (1944)]. Transmission line characteristic impedance: Z_{0}. For any impedance Z, define $z=Z / Z_{0}$ and $w=(z-1) /(z+1)$. Satisfies $|w| \leq 1$ since $\operatorname{Re}(z) \geq 0$. Propagation along line is just a rotation in the w-plane. This resembles transformation between K and $S=(1-i K) /(1+i K)(1$ channel).
Transformation noted by Wigner in 1949; he claims to have learned it from Dicke. His R-matrix is just the K-matrix:

$$
R_{s s^{\prime}}(E)=\sum_{\lambda} \frac{\gamma_{\lambda s} \gamma_{\lambda s^{\prime}}}{E_{\lambda}-E}
$$

S-matrix and its relatives (T-matrix, K-matrix, ...) have a long history in the description of scattering; S relates "in" states to "out" states
$S_{\ell}(k)=e^{2 i \delta_{\ell}(k)}$ describes elastic scattering [partial wave ℓ]
Phase shifts go through $\pi / 2$ at a resonance, where scattering amplitude $f_{\ell}(k)=(S-1) /(2 i k)$ is maximal
Many interesting results follow from optical analogy; proton is not totally black but has an "edge"
Adding resonances is best done using K-matrix, where $S=(\mathbb{1}+i K) /(\mathbb{1}-i K)$
Some simple examples given of one- and two-channel problems
S-wave behavior particlarly interesting near new thresholds

SPREADING WAVE

Expand about $\vec{q}=\vec{p}$; define $\vec{k} \equiv \vec{q}-\vec{p}$ and $v_{i} \equiv \partial E_{p} / \partial p_{i}$

$$
E_{q}=E_{p}+\vec{k} \cdot \vec{v}+\frac{1}{2} k_{i} k_{j} \frac{\partial^{2} E_{p}}{\partial p_{i} \partial p_{j}}+\ldots
$$

$$
\psi_{\vec{p}}(\vec{r}, t)=e^{-i E_{p} t} \chi_{\vec{p}} \int d^{3} k \phi(\vec{k}) e^{i \vec{k} \cdot(\vec{r}-\vec{v} t)}\left(1-\frac{i t}{2} k_{i} k_{j} \frac{\partial^{2} E_{p}}{\partial p_{i} \partial p_{j}}+\ldots\right)
$$

$$
=e^{-i E_{p} t} \chi_{\vec{p}}\left(1+\frac{i t}{2} \frac{\partial^{2} E_{p}}{\partial p_{i} \partial p_{j}} \nabla_{i} \nabla_{j}+\ldots\right) G(\vec{r}-\vec{v} t) .
$$

Gaussian packet: $G(r)=N e^{-r^{2} / 2 w^{2}}$
$\nabla_{i} \nabla_{j} G(\vec{r}-\vec{v} t)=\left[-\frac{\delta_{i j}}{w^{2}}+\frac{\left(r_{i}-v_{i} t\right)\left(r_{j}-v_{j} t\right)}{\left(w^{2}\right)^{2}}\right] G(\vec{r}-\vec{v} t)$.
NR: $\partial^{2} E_{p} /\left(\partial p_{i} \partial p_{j}\right)=\delta_{i j} / m$; parameter describing
spreading is $\epsilon=\frac{t}{2} \frac{\partial^{2} E_{p}}{\partial p_{i} \partial p_{j}} \nabla_{i} \nabla_{j} G(\vec{r}-\vec{v} t) \sim \frac{t}{2 m w^{2}}=\frac{L(\Delta k)^{2}}{2 p}$.

Consider the reflectionless many-bound-state potential in one dimension with $S=\Pi_{i=1}^{N} S_{i}$ and $S_{i}=\left(k+i \alpha_{j}\right) /(k-$ $\left.i \alpha_{j}\right)$. Calculate the difference in the phase shifts at zero and infinite momentum $k: \delta(0)-\delta(\infty)$. This is an illustration of Levinson's Theorem [N. Levinson, K. Danske Vidensk. Selsk. Mat-fys. Medd. 25, No. 9 (1949); see also S.-H. Dong et al., arXiv:quant-ph/9903016].
Consider transmission of a plane wave in one dimension past a square well of depth $-V_{0}$ and extent $-a \leq x \leq a$. This satisfies unitarity by construction, and has multiple transmission resonances. Is $K=\sum K_{i}$ valid?
Use a 2-channel K-matrix to describe the behavior of S-wave $\pi \pi$ scattering as energy increases through $K K$ threshold [S. M. Flatté et al., Phys. Lett. 38B, 232 (1972); K. L. Au et al., Phys. Rev. D 35, 1633 (1987)]

ADDITIONAL REFERENCES

K. M. Watson, Phys. Rev. 95, 228 (1954) (Theorem).
K-matrix fit to $\pi N \rightarrow \pi \pi N$: R. S. Longacre et al., Phys. Rev. D 17, 1795 (1978).
S-matrix and networks: E. P. Wigner, Am. J. Phys. 17, 99 (1949); J. L. Rosner, Am. J. Phys. 61, 310 (1993).
Reflectionless 1-dim. potentials with N bound states: A. K. Grant and J. L. Rosner, JMP 35, 2142 (1994).
K-matrix partial-wave analysis: S. U. Chung et al., Ann. d. Phys. 4, 404 (1995).

Levinson's Theorem: S.-H. Dong et al., Int. J. Theor. Phys. 39, 469 (2000) [arXiv:quant-ph/9903016].
$\pi \pi$ scattering: V. V. Anisovich \& A. V. Sarantsev, Eur. Phys. J. A 16, 229 (2003).

BAUER'S FORMULA

Expand incoming plane wave in terms of $P_{\ell}(\cos \theta)$:
$e^{i k r \cos \theta}=\sum_{\ell} c_{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta)$
Let $s \equiv \cos \theta$ and take partial wave projection:
$\frac{2}{2 \ell+1} c_{\ell} j_{\ell}(k r)=\int_{-1}^{1} d s e^{i k r s} \frac{1}{2^{\ell \ell}!\frac{d^{\ell}}{d s}}\left(s^{2}-1\right)^{\ell}$
(using Rodriguez' formula for the Legendre polynomial) Integrating ℓ times by parts (surface terms $=0$), $c_{\ell} j_{\ell}(k r)=\frac{2 \ell+1}{2^{\ell+1} \ell!}(i k r)^{\ell} \int_{-1}^{1} d s\left(1-s^{2}\right)^{\ell} e^{i k r s}$
Using an integral representation for $j_{\ell}(k r)$, this is just $(2 \ell+1) i^{\ell} j_{\ell}(k r)$, i.e., $c_{\ell}=(2 \ell+1) i^{\ell}$

SMITH CHART AND QUANTUM MECHANIC\$ ${ }^{36}$

JLR, Am. J. Phys. 61 (4), 310 (1993); thanks to Dicke Matrix method in quantum mechanics for region of constant potential $V_{0}<E, k^{2} \equiv 2 m\left(E-V_{0}\right)$:
$\Psi(x) \equiv\left[\begin{array}{c}\psi(x) \\ \psi^{\prime}(x)\end{array}\right] ; \quad M \equiv\left[\begin{array}{cc}0 & 1 \\ -k^{2} & 0\end{array}\right] ; \quad \frac{d \Psi(x)}{d x}=M \Psi(x)$
Shift by $a: \Psi(x+a)=\exp (M a) \Psi(x)=T_{a} \Psi(x)$
where $\quad T_{a}=\left[\begin{array}{cc}\cos k a & k^{-1} \sin k a \\ -k \sin k a & \cos k a\end{array}\right]$
For $E<V_{0}$ define $\kappa^{2} \equiv 2 m\left(V_{0}-E\right)$; corresponding shift operator is $T_{a}=\left[\begin{array}{cc}\cosh \kappa a & \kappa^{-1} \sinh \kappa a \\ \kappa \sinh \kappa a & \cosh \kappa a\end{array}\right]$

CIRCUIT ANALOGY

Represent local voltage V, current I with
$\Phi=\left[\begin{array}{c}V \\ I\end{array}\right] ;$ (series, par.) impedances $Z_{s, p} \Rightarrow \Phi^{\prime}=T_{s, p} \Phi$
with $T_{\text {series }} \equiv\left[\begin{array}{cc}1 & -Z_{s} \\ 0 & 1\end{array}\right], \quad T_{\text {parallel }} \equiv\left[\begin{array}{cc}1 & 0 \\ -1 / Z_{p} & 1\end{array}\right]$
Traveling wave of wavelength $\lambda=2 \pi / k$ on a transmission line of characteristic impedance $Z_{0}: \Phi(x+a)=T_{a, Z_{0}} \Phi(x)$ where $T_{a, Z_{0}}=\left[\begin{array}{cc}\cos k a & i Z_{0} \sin k a \\ i Z_{0}^{-1} \sin k a & \cos k a\end{array}\right]$

Load impedance Z_{ℓ} at input of transmission line (length a, characteristic impedance Z_{0}) connected to antenna of impedance Z_{a} : take unit current $I=1$ and voltage $V=Z_{a}$ at antenna $(x=a)$ and calculate $Z_{\ell}=V(x=0) / I(x=0)$

LOAD IMPEDANCE

$\Phi(x=0)=\left[\begin{array}{c}V(x=0) \\ I(x=0)\end{array}\right]=T_{a, Z_{0}}^{-1} \Phi(x=a)=T_{a, Z_{0}}^{-1}\left[\begin{array}{c}Z_{a} \\ 1\end{array}\right]$
$Z_{\ell}=V(x=0) / I(x=0)=Z_{0} \frac{Z_{a} \cos k a-i Z_{0} \sin k a}{Z_{0} \cos k a-i Z_{a} \sin k a}$
yielding

$$
\frac{Z_{\ell}-Z_{0}}{Z_{\ell}+Z_{0}}=e^{2 i k a \frac{Z_{a}-Z_{0}}{Z_{a}+Z_{0}}}
$$

Define normalized impedance $z \equiv Z / Z_{0}$ and $w \equiv(z-1) /(z+1)$; then $w_{\ell}=e^{2 i k a} w_{a}$ $k a=2 \pi a / \lambda$ is electric length of transmission line Unit circle $w=1$: reactive impedances; real axis $[-1<w<1] \Leftrightarrow$ resistances $0<R<\infty$ Matching impedances \Leftrightarrow rotations in the w plane; wave propagation looks like effect of S-matrix

SMITH CHART

Smith Chart This is the $w=\frac{z-1}{z+1}$ plane; $z \equiv Z / Z_{0}$
 and typically $Z_{0}=50 \Omega$
Center corresonds to $Z=Z_{0}$
Unit circle corresponds to imaginary impedances (capacitive or reactive) Read off complex impedances from grid; propagation along transm. line $=$ rotation in W-plane

