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Bondi charges are not conserved but the difference is

This is the charge contained in a shell expanding at the speed of light, 
so it’s the charge carried away by radiation (=massless fields)
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To give a better expression to charges in general relativity and 
especially to angular  momentum we need a bit of formalism..
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This metric is invariant under:
1) Lorentz transformations, that act as conformal isometries of the 

celestial sphere 
2) Supertranslations.  At leading order in  they are: 

They transform the shear as 

θA → θA + VA(θ)
r u → u + f(θ)
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The supertranslation charges are

and  is the energy-momentum 4-vector 

Q[ f ] =
1

4πG ∫ d2θ hf(θ)m(θ, u)

Q(θ) = P0 + PmY1 m(θ)
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 are the 6 conformal Killing vectors of the celestial sphere 
obeying 

u
JY(u) =

1
8πG ∫ d2θ hYANA(θ, u)

YA

DAYB + DBYA = hABDCYC

The total (conserved) angular momentum is  and the angular 
momentum flux is  

JY(−∞)
ΔJ ≡ J(+∞) − J(−∞)
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JY(−∞)
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The flux of a conserved charge (e.g. angular momentum) is defined as 
the difference of charges defined at null infinity 

=
charge radiated away by massless particles



The flux of angular momentum can be changed by supertranslations, 
i.e. by adding an infinite-wavelength gravitational wave! 
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The flux of angular momentum can be changed by supertranslations, 
i.e. by adding an infinite-wavelength gravitational wave! 

Not crazy  (  can be large even when the momentum is small)

 yet not useful: we want to be able to tell wheat from chaff separating 
the radiation due to a scattering process (e.g. black hole mergers) 

from unobservable backgrounds

ΔJY → ΔJY +
1

4πG ∫ d2θ hYAΔm(θ)∂A f(θ)

p × x



vs   “chaff”

“wheat’’

But… it may be difficult to tell one from the other!



Several choices of angular momentum exist in the literature. 
We will choose one proposed by Chen, Wang, Wang and Yau
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1
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DADBCAB(±∞, θ) ≡ D2(D2 + 2)C±

δw
Y X ≡ wDCYCX + YCDCX

δfC
± = f, δf m

± = 0
Other definitions dress the angular momentum by using only  the 

boundary graviton  as additional degree of freedom. Some do not 
capture  contributions to the flux needed to explain radiative 

back-reaction effects in gravitational scattering.

C−

O(G2)
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The flux   computes:
final angular momentum in the supertranslation frame where the 

final metric is    
MINUS

initial angular momentum in the supertranslation frame where 
the initial metric is 

THESE ARE THE FRAMES WHERE THE BONDI CHARGES 
COINCIDE WITH CANONICAL ADM CHARGES 
(Veneziano and Vilkovisky following Ashtekar et al.)

This may explain why they coincide with scattering amplitudes 
computations and other perturbative computations that implicitly 

or explicitly work in the “round-metric’’  canonical frame.
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        THE CWWY FLUX AND COVARIANCE 

The flux   is covariant if  transform
covariantly i.e.

  

 

 
They are the transformations of SL(2,R) conformal fields of 

weight
  

 These transformations follow from the asymptotic form of  
Lorentz transformations on the metric 

  Generated by     not by  
  

ΔJCWWY
Y m+, m−, C+, C−

δ3/2
Y m± =

3
2

DAYAm± + YADAm±

δ−1/2
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1
2
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J−
Y J−

Y − jY(m−, C−)



Expand the definition of  in spherical harmonics

 

CWWY define 
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l(1 − l2)(l + 2)Clm(u) = 4mlm(u) − 4m−
lm + ∫

u

−∞
dvTlm

uu(v) + C−
lm, l > 1

Clm(u) = 0, l = 0,1

THE FIRST PROBLEM WITH LORENTZ BOOSTS 

Lorentz transformations mix l>1 with l=0,1 so the condition 
 

is incompatible with Lorentz invariance
C±

lm = 0 l = 1,0



THE SECOND PROBLEM WITH LORENTZ BOOSTS: 
supertranslation invariance + covariance = translation invariance

 
invariant flux is ALSO TRANSLATION INVARIANT



THE SECOND PROBLEM WITH LORENTZ BOOSTS: 
supertranslation invariance + covariance = translation invariance

 
invariant flux is ALSO TRANSLATION INVARIANT

JACOBI:
 

COVARIANCE

SUPERTRANSLATION INVARIANCE

[[Fμν, Jρσ], Sa] + [[Sa, Fμν], Jρσ] + [[Jρσ, Sa], Fμν] = 0

[Fμν, Jρσ] = − ημρFνσ − ηνσFμρ + ηνρFμσ + ημσFνρ

[Sa, Fμν] = 0



THE SECOND PROBLEM WITH LORENTZ BOOSTS: 
supertranslation invariance + covariance = translation invariance

 
invariant flux is ALSO TRANSLATION INVARIANT

JACOBI:
 

COVARIANCE

SUPERTRANSLATION INVARIANCE

On the other hand: 

so Jacobi implies 

[[Fμν, Jρσ], Sa] + [[Sa, Fμν], Jρσ] + [[Jρσ, Sa], Fμν] = 0

[Fμν, Jρσ] = − ημρFνσ − ηνσFμρ + ηνρFμσ + ημσFνρ

[Sa, Fμν] = 0

[JρσSa] = supertranslations + TRANSLATIONS

[Fμν, Pρ] = 0
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massless particles.  Angular momentum flux vanishes:

⃗P

⃗J (−∞) = 0, ⃗J (+∞) = 0

Translate frame by :   :
Angular momentum flux does not vanish!  

⃗a ⃗J (−∞) = ⃗a × ⃗P , ⃗J (+∞) = 0
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with respect to a particular point that defines the origin of 

the coordinate system.

We need an independent COVARIANT prescription to define it.
This prescription also fixes the l=0,1 components of the

“electric shear” , which are otherwise undetermined.C(u)

We define it first in the initial center of mass rest frame 

This definition still allows for spacetime translations

m−
1,m ≡ ∫ d2Θ hY1mm(−∞, Θ) = 0

We fix the origin of the the initial center of mass rest frame by 
requiring       

       
for  all boosts, which can be written as         

J−
Ȳ − jȲ[m−, C−] = 0

ȲA = boost = DAψ, D2ψ = − 2ψ
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In tensor notation we have just set   
in a generic frame we impose the manifestly covariant condition

In the initial rest frame  so we recover 

J−
i0 = 0

J−
μν − P−μ = 0

⃗P − = 0 J−
i0 = 0

The condition  is implicitly used in most papers 
on gravitational radiation because the frame of choice is a CMRF 

where the origin of coordinates coincides with the COM

J−
Ȳ − jȲ[m−, C−] = 0
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for 
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00] =
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00

4πG ∫ d2Θ hψm+
l=1, ȲA = DAψ

J+
Ȳ − jȲ[m+, C+] = 0

ψ = m+
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In tensor notations: write  and we can fix  
by setting 

J+
i0 = JT

i0 + cP+
i C+

00
c = 0



After  is fixed, the covariant flux is 
 

when both  are computed in the metric   

C± |l≤1
ΔJCWWY

Y = J+
Y − J−

Y
J±

Y hAB + O(1/r2)
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It was recently argued that  in the  frame is the 
ADM angular momentum (using results by Ashtekar et al.)

So  is the change in the total ADM angular 
momentum. Riva Vernizzi and Wong verified in some cases that it 

coincides with the formulas given by Bini, Damour and Manohar et al.

This identification is valid only for the ADM Lorentz generators 
defined with special asymptotic boundary conditions that forbid 

supertranslations (there is no single angular momentum otherwise)
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Compère et al. and JKP show that 

generate the Poincaré algebra. How is this consistent with all that 
we just found? 

Because  does not generate the Lorentz 
transformations induced on the asymptotic metric by the 

coordinate change 

It generates instead a linear combination of Lorentz 
transformations PLUS (generalized) supertranslations that cancel 

the action of the Lorentz transformations on 

This is obvious because supertranslation invariance implies

J−
Y − jY(m−, C− |l>1 ), m |l<1

𝔍Y ≡ J−
Y − jY(m−, C− |l>1 )

u = K(x̄)ū, x = g(x̄), r = K(x̄)

C− |l>1 , m |l>1

̂δYC− |l>1 ≡ [𝔍Y, C− |l>1 ] = 0, ̂δYm |l>1 ≡ [𝔍Y, m− |l>1 ] = 0



• The formula may be interpreted as the difference of ADM 
angular momentum before and after a burst of radiation 
through  

• Why the formula works at all? What is special about the 
“canonical frame’’ or in fact the standard ADM angular 
momentum?

•  Can we make sense of the other formulas -e.g. by identifying 
 with the amount of radiated angular momentum that can 

be detected or extracted by appropriate asymptotic observers?

• Link with ADM quantities computed at  when asymptotic 
falloff of the metric is relaxed to allow for the full BMS algebra?

• IR safe fluxes? So far we removed  the effect of radiation with
 . How to remove the effect of finite-wavelength 

radiation?

ℐ

ΔJBMS
Y

i0

λ = ∞

SUMMARY


