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Bondi charges are not conserved but the difference is

Q,—0, = limHooJ, d3xj0(x, f)

I—u<R<t—vy

This is the charge contained in a shell expanding at the speed of light,
so it’s the charge carried away by radiation (=massless fields)

To give a better expression to charges in general relativity and
especially to angular momentum we need a bit of formalism..
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This metric is invariant under:
|) Lorentz transformations, that act as conformal isometries of the

celestial sphere 8 — 64 + V4(9)
2) Supertranslations. At leading order in r they are:u — u + f(0)

They transform the shear as Cyz = Cyp + (=2D,Dp + h,zD?)f

The supertranslation charges are

|
Olf1=7 szex/sz)m(e, 7
nG

and Q(0) = P’ + P, Y, (0) is the energy-momentum 4-vector




The Bondi Lorentz charges at retarded time u are
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The Bondi Lorentz charges at retarded time u are
I 2 A
J (1) = d*0\/hYAN,(6, u)
3nG

Y4 are the 6 conformal Killing vectors of the celestial sphere
obeying D, Yy + DpY, = h,zD/Y*

The total (conserved) angular momentum is Jy(—o0) and the angular
momentum flux is AJ = J(+o00) — J(— o0)



The flux of a conserved charge (e.g. angular momentum) is defined as
the difference of charges defined at null infinity

charge radiated away by massless particles
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The flux of angular momentum can be changed by supertranslations,
i.e. by adding an infinite-wavelength gravitational wave!

1
AJy — AJy 4 pove Jd%\/ZYAAm(e)aA 1(0)
T

Not crazy (p X x can be large even when the momentum is small)

yet not useful: we want to be able to tell wheat from chaff separating
the radiation due to a scattering process (e.g. black hole mergers)
from unobservable backgrounds



But... it may be difficult to tell one from the other!

“wheat”

vs ‘‘chaff”




Several choices of angular momentum exist in the literature.
We will choose one proposed by Chen,Wang,Wang and Yau
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JeW M (xo0) = Jy — jy(m™, C*)

1 1
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DADBC, (0, 0) = D*(D* + 2)C*
S¥X =wD Y X + YOD X

invariant because o,C =, 5fmi =0

Other definitions dress the angular momentum by using only the
boundary graviton C~ as additional degree of freedom. Some do not

capture O(G?) contributions to the flux needed to explain radiative
back-reaction effects in gravitational scattering.
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THE CWWY FLUX ISA GOOD CANDIDATE
JeW M (£ 00) = Iy — jy(m™, C*)
Jy "M (+o0) = JF |y Iy (=00) = Uy |

The flux AJ?WWY computes:

final angular momentum in the supertranslation frame where the
final metric is 1,5 + O(1/7?)
MINUS
initial angular momentum in the supertranslation frame where
the initial metric is /1, + O(1/7°)

THESE ARE THE FRAMES WHERE THE BONDI CHARGES Jy
COINCIDEWITH CANONICALADM CHARGES

(Veneziano and Vilkovisky following Ashtekar et al.)
This may explain why they coincide with scattering amplitudes
computations and other perturbative computations that implicitly
or explicitly work in the “round-metric” canonical frame.
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THE CWWY FLUX AND COVARIANCE

The flux AJSWWY is covariant if m™, m—, C*, C~ transform
covariantly i.e.

3
5/ *m* = EDAYAmir + YAD,m*

1

They are the transformations of SL(2,R) conformal fields of
weight
w=23/2, —1/2
These transformations follow from the asymptotic form of
Lorentz transformations on the metric

Generated by J;,, not by Jy, —jy(m™—,C™)



THE FIRST PROBLEMWITH LORENTZ BOOSTS
Expand the definition of C(6, u) in spherical harmonics
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THE FIRST PROBLEMWITH LORENTZ BOOSTS
Expand the definition of C(6, u) in spherical harmonics

rU

(1 -1P)I+2)C, () =4m, () —4m; + | TV +Cr, [>1

u

J —0o0

CWWY define C,,,(u) =0, [=0,1
this definition is NOT Lorentz-covariant

Lorentz transformations mix |1>1 with [=0,] so the condition
Cli,;1 =0 [=1,0

is incompatible with Lorentz invariance
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THE SECOND PROBLEM WITH LORENTZ BOOSTS:
supertranslation invariance + covariance = translation invariance

invariant flux is ALSO TRANSLATION INVARIANT

JACOBI:
[[F*, JP°], S + [[S% F**],J°°] + [[J7°, $%], F**] = 0

COVARIANCE
[F/“/, JIDG] —_— }/]MIOFUO- —_ ;/]VUF:M:O _|_ ;/IUIOFMG _|_ ;/]MGFUP

SUPERTRANSLATION INVARIANCE
[S9, F*] = 0

On the other hand:
[JP°SY] = supertranslations + TRANSLATIONS

so Jacobi implies [F**, PP] = 0
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Neither angular momentum nor the angular momentum flux are
translation invariant .
In COM frame a massive particle with momentum P decays in two
massless particles. Angular momentum flux vanishes:

J(=0)=0, J(+00)=0

Translate frame by a": T(— ®) = a X F, T(+ 00)=0:
Angular momentum flux does not vanish!
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Any supertranslation-invariant flux is an intrinsic quantity defined
with respect to a particular point that defines the origin of
the coordinate system.

We need an independent COVARIANT prescription to define it.
This prescription also fixes the I=0,1 components of the

“electric shear” C(u), which are otherwise undetermined.

We define it first in the initial center of mass rest frame
my,, = Jd2®\/ZY1mm(—oo, ©)=0
This definition still allows for spacetime translations

We fix the origin of the the initial center of mass rest frame by
requiring
—Jylm—, C7] =
for all boosts which can be written as
= boost = D%, D*w = — 2w
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J7 —jslm—,C7] =0

defines the I=] components of C~ = ((—o0). After some
straightforward calculations:
oo Cr, = Jsm—julm™, C~ Y = DAY
472G Ilm — JYA _]YA[m ’ ‘l>1]’ — 1—m

In tensor notation we have just set J;, =0
in a generic frame we impose the manifestly covariant condition

—  peu_
J;w P H*=(
In the initial rest frame P~ = 0 so we recover Ji6 —

The condition J; — jym ™, C™] = 0 is implicitly used in most papers
on gravitational radiation because the frame of choice is a CMRF
where the origin of coordinates coincides with the COM
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To completely define the a covariant and (super)translation invariant
flux we have to define also C™|,_,

To make contact with most of literature we choose

C i1 = C iy
When the final momentum m,”, is nonzero
. Coo -

We can use this to set
J;-; —jy[m+, Ct1=0
fory =m.

In tensor notations: write J| = Jl% + cP;" and we can fix Cj,
by setting ¢ = 0
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After C* |, is fixed, the covariant flux is
ATV =T - Uy
when both J3 are computed in the metric /5 + O(1/r%)

It was recently argued that J; in the i, + O(1/r°) frame is the
ADM angular momentum (using results by Ashtekar et al.)

So AJ?WWY = J; — Jy is the change in the total ADM angular

momentum. Riva Vernizzi and Wong verified in some cases that it
coincides with the formulas given by Bini, Damour and Manohar et al.

This identification is valid only for the ADM Lorentz generators
defined with special asymptotic boundary conditions that forbid
supertranslations (there is no single angular momentum otherwise)
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Compere et al. and JKP show that

__jY(m_9 C_‘l>1)9 m‘l<1
generate the Poincareé algebra. How is this consistent with all that
we just found!?

Because i§y = Jy — jy(m™, C™ | ,) does not generate the Lorentz

transformations induced on the asymptotic metric by the
coordinate change u = K(X)iu, Xx = g(X), r = K(X)

It generates instead a linear combination of Lorentz
transformations PLUS (generalized) supertranslations that cancel

the action of the Lorentz transformations on C~ \l>1 , m \l>1

This is obvious because supertranslation invariance |mpI|es
5YC_‘1>1 =[Sy C )5, 1=0, 5Ym‘l>1 =[Sym ™ |51 =



SUMMARY

The formula may be interpreted as the difference of ADM
angular momentum before and after a burst of radiation

through ./

Why the formula works at all? What is special about the
“canonical frame” or in fact the standard ADM angular
momentum/?

Can we make sense of the other formulas -e.g. by identifyin
& by ying
AJ?MS with the amount of radiated angular momentum that can

be detected or extracted by appropriate asymptotic observers!

Link with ADM quantities computed at i’ when asymptotic
falloff of the metric is relaxed to allow for the full BMS algebra!?

IR safe fluxes? So far we removed the effect of radiation with

A = 00 . How to remove the effect of finite-wavelength
radiation!?



