Studying galaxy formation with dynamical modelling

Michele Cappellari

General framework

Hierarchical galaxy formation

Millennium (Springel et al. 2005)

(Schawinski+14)

Early-type galaxy = ETG

- **Bimodal galaxy colour distribution** \bigcirc
- Mergers of blue galaxies \rightarrow Red galaxies
- Feedback required for quick transition: Blue \rightarrow Red \bigcirc
- Merger of red galaxies required to reach highest masses \bigcirc

What are the observables?

Integral-field spectroscopy (IFS) (Allington-Smith 2006)
Various technical approaches
All produce a three-dimensional data-cube

The revolution of IFS surveys

(Emsellem+04)

SAURON survey: deZeeuw+02 48 ETGs + 24 spirals

(Krajnovic+11) ATLAS^{3D} survey: Cappellari+11 260 ETGs volume-limited http://purl.org/atlas3d

The race to large IFS samples

Gas kinematics

Credits: R. García-Benito, F. Rosales-Ortega, E. Pérez, C.J. Walcher, S.F. Sánchez & the CALIFA team (2014)

CALIFA survey: Sánchez+12 600 ETG + spiral galaxies planned, 200 in DR2 http://califaserv.caha.es/

- Multiplexed surveys:
- SAMI 13 IFUs: Bryan+15
 - 3,400 galaxies planned
- MaNGA 17 IFUs: Bundy+15
 - 10,000 galaxies planned
- Hector: Bland-Hawthorn+15
 - 100,000 galaxies planned
 - Aims for end of the decade

Galaxy kinematics from data cubes

Galaxy image gives 0th velocity moment →Σ
 Each spectrum in data cube is Doppler shifted
 Spectrum shift gives 1st velocity moment → V
 Lines broadening gives 2nd moment → σ ...

Dynamical modelling techniques

Main dynamical methods

- Orbit-superposition (Schwarzschild 1979)
 - Spherical: Richstone & Tremaine (1988)
 - Axisymmetric: van der Marel et al. (1998)
 - Triaxial: van den Bosch et al. (2008)
- Velocity moments (Jeans 1922)
 - Isotropic: Binney et al. (1990)
 - Anisotropic: Cappellari (2008)

Schwarzschild's (1979) method Assume steady state (Jeans theorem) $DF = f(x, y, z, v_x, v_y, v_z) = f(I)$ Find complete set of basis functions for DF $DF = \sum w_j F_j(I)$ Linear superposition of observables $O_{\alpha}(x',y') = \sum G_{\alpha}[F_j(I)]$ • Key idea: basis functions F_i are stellar orbits

Orbital superposition

Image of orbit on sky

Time

Images of model orbits

Observed galaxy image & kinematics

- Orbital set changes with gravitational potential (e.g. black hole or dark matter)
- Find the set of orbits that better fits the data

Fit orbits to observables

With N orbits and M observables to fit
Problem to solve in the least-squares sense:

$$\begin{pmatrix} p_{1,1} & \cdots & p_{1,N} \\ \vdots & \ddots & \vdots \\ p_{M,1} & \cdots & p_{M,N} \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} = \begin{pmatrix} o_1 \\ \vdots \\ o_M \end{pmatrix}$$

•
$$\min_{x} \{ \|Ax - b\| \}$$
 with $x > 0$

- Is a Non-Negative Least-Squares problem
- Has a unique (possibly degenerate) minimum
- Efficient algorithms exist (NNLS or quadratic prog.)

Intrinsic dynamical degeneracy

(Krajnovic+05)

- Orbital distribution is 3D \rightarrow 3D data (=IFU) needed
- But even 3D data not sufficient to constrain both DF and potential (two 3D functions)
- Degeneracies are expected! See inclination above 1

Spherical Jeans (1922) equations

- Think hydrodynamics: pressure $\rightarrow \sigma$
- Gravity balanced by σ (velocity 2nd moment)
- Simplest spherical form

$$\nu \frac{GM(r)}{r^2} = \frac{d}{dr} [\nu \sigma^2(r)] \rightarrow \rho g(z) = -\frac{d}{dz} P(z)$$

- Infer v(r) from photometry $\Sigma(R)$
- Adopt parametrization for total mass
- Calculate PSF-convolved $\sigma_{los}(R)$
- Fit model to data

Solving axisymmetric Jeans eq.

Focus on velocity second moments \$\langle v_{jk}^2 \rangle\$ only
Assume shape of velocity ellipsoid (2 ratios)
Solve hydrostatic equilibrium equations
Can this simple model describe real galaxies?

- Velocity ellipsoid from Schwarzschild's models
- Nearly spherically aligned beyond 1Re
- $\sigma_R \approx \sigma_\phi$
- $\sigma_z < \sigma_R$ on equatorial plane & symmetry axis (Cappellari+07; Thomas+09)

Maximum density along line-of-sight

- Velocity ellipsoid from Schwarzschild's models
- Nearly spherically aligned beyond 1Re
- $\sigma_R \approx \sigma_\phi$
- $\sigma_z < \sigma_R$ on equatorial plane & symmetry axis (Cappellari+07; Thomas+09)

Maximum density along line-of-sight

- Velocity ellipsoid from Schwarzschild's models
- Nearly spherically aligned beyond 1Re
- $\sigma_R \approx \sigma_\phi$
- $\sigma_z < \sigma_R$ on equatorial plane & symmetry axis (Cappellari+07; Thomas+09)

Maximum density along line-of-sight

- Velocity ellipsoid from Schwarzschild's models
- Nearly spherically aligned beyond 1Re
- $\sigma_R \approx \sigma_\phi$
- $\sigma_z < \sigma_R$ on equatorial plane & symmetry axis (Cappellari+07; Thomas+09)

Maximum density along line-of-sight

- Use Multi-Gaussian fit to images (Emsellem+94; Cappellari-02)
- Efficient Jeans solution with $\sigma_z \neq \sigma_R \neq \sigma_\phi$ (Cappellari-08)
- Just two parameters (*i*, σ_z/σ_R) fit shape of both V_{rms} and V! (http://purl.org/cappellari/software)

Galaxy structure from kinematics/dynamics

Fast kinematics very homogeneous

Kinematics encoded by <u>one</u> number β_z = 1 - σ_z²/σ_R²
 Differences entirely due to bulge/disk fraction

Fast/slow: rotation dichotomy

Fast rotators have oblate velocity ellipsoid
 Observed scatter of 7% including models errors!
 Consistent distribution for both E and SO galaxies
 Slow rotators follow different distribution

But two major classes: non-regular/regular

What is the shape of ellipticals?

 Trivial concept
 Difficult solution
 Profound implications Side Views

Sphere or disk?

Key accretion processes

Gas accretion

(Cappellari-11 Nature) • Two main channels a) Build up by gas accretion (+ quenching) b) Build up by dry mergers • What are their relative contributions?

Recognizing disks using dynamics

Disky Elliptical

S0 (Cappellari-16 ARA&A)

- Dynamics identifies nearly face-on disks \bigcirc
- Only $\leq 2\%$ of disk can be missed \mathbf{O}

Stellar angular momentum

Cappellari-16 ARA&A

Data from: Emsellem+11 Fogarty+15

Non-regular

• Fast rotator \rightarrow inclined disk galaxies

Consistent with anisotropy trend from dynamics

• Slow rotator \rightarrow weakly triaxial c/a > 0.75

E/SO are poor proxy for kinematics

Expected trend angular momentum vs. morphology

Explained by variation in bulge fraction

• 2/3 of classic ellipticals from RC3 are fast rotators!

Summary of galaxy structure

Cappellari+13b)

 Bulge fraction linked to quenching of star formation (see Cappellari+11b; Kauffmann+12; Bell+12; Cheung+12; Fang+12)
 Three characteristic galaxy stellar masses

(cfr. Davies+83; Faber+97; Kauffmann+03; van der Wel+09; Geha+12)

Summary of galaxy evolution

 Two channels of galaxy formation (e.g. Khochfar+11)
 Also explains observed black hole scaling relations (e.g. Kormendy-Ho 13, Grahm-Scott13, Krajnovic+17)
 But galaxies do not follow both in sequence!

Hierarchical morphology evolution

Fast rotators

- Generally satellites or isolated
- Quenched by environment
- Or by internal processes
- Bulge grows with quenching

Core slow rotators

- Generally near halo centre
 Sink by dynamical friction
 - Mass grows by dry mergers
 - Halo quenching

Galaxy density profiles and dark matter

Spirals rotation from ionized gas

- Extended curves from ionized gas (Rubin-Ford70; Roberts-Whitehurst75; Rubin+80)
- Outer curves remain flat
- Limited to optical disk
- No connection to dark matter made
- Need to estimate baryonic mass

At Lowell Observatory © Bob Rubin

Spirals rotation from HI

- Radio HI observations
- Extend well beyond images
- Rotation curves still flat
- "it seems relatively certain that dark material is being detected" (Faber+Gallager79 ARA&A)

Little dark matter in ETGs centres (1R_a)

Best fitting median $f_{DM}(R_e) = 13\%$ \bigcirc

- Fully consistent with ACDM prediction \bigcirc
 - Fixed-halo models fitted to real ATLAS^{3D} galaxies
 - Use NFW following $M_{200} M_{\star}$ and $\overline{M_{200}} \overline{c_{200}}$ (Moster+10, Behroozi+10, Guo+10)

ETGs 2-dim dynamics to 4R_e

- 14 fast rotator ETGs ($10.2 < \log M_*/M_{\odot} < 11.7$)
- Model ATLAS^{3D} + SLUGGS stellar kinematics
- Median coverage of 4Re (2.0-6.2R_e)
- Sample dynamics where dark matter dominates

ETG profiles are like in spirals

(Cappellari+15 ApJL)

- Universal <u>total</u> mass profile to $4R_e$: $\rho_{tot} \propto r^{-2.2}$
- Observed rms scatter 0.11 in logarithmic slope
- Same as strong lensing studies near R_e/2 (Auger+10)

Rotation curves in spirals and ETGs

- Similar total density profiles
- Evidence for dark matter
- Slopes consistent with ACDM predictions
- Consistent with evolution spirals \rightarrow ellipticals

Can we rule out alternative gravity?

Use Modified Newtonian Dynamics (MOND)
Try to predict observed accelerations
Predictions consistent with the data!

The Radial Acceleration Relation

240 galaxies; 9 dex in stellar mass

Empirical relation between

- Predicted acceleration from baryons + models
- Measured acceleration from kinematics
- Support modified gravity? MOND (Milgrom 1983)

Summary

 Galaxy dynamical models Based on integral-field stellar kinematics Demonstrate dichotomy of galaxy properties Indicative of two evolutionary channels Measure nearly universal density profiles Consistent with ACDM paradigm But surprising link of baryons and dark matter