N = 8 Supergravity, and beyond

Or: what symmetry can teach us about quantum gravity and the unification of physics.

> Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

[with thanks to: Bernard de Wit, Thibault Damour, Marc Henneaux and Axel Kleinschmidt]

Main theme: Symmetry

Main theme: Symmetry

- ... arguably the most successful principle of physics!
 - Space-time symmetries
 - Rotations and translations in Newtonian physics
 - Special relativity and the Poincaré group
 - General relativity and general covariance
 - Internal symmetries
 - Isospin SU(2) symmetry: $m_{\text{neutron}} = 1.00135 m_{\text{proton}}$
 - Flavor symmetry SU(3) and the strong interactions
 - Standard model and $SU(3)_c \times SU(2)_w \times U(1)_Y$
 - The two fundamental theories of modern physics, General Relativity and the Standard Model of Particle Physics, are based on and largely determined by symmetry principles!

Where we stand

Known laws of physics successfully describe observed phenomena over a huge range of distances from $10^{-18} m$ all the way to the visible horizon of our universe.

- General Relativity: gravity from space-time curvature (general covariance and equivalence principle).
- Standard Model of Particle Physics: combines quantum mechanics and special relativity to describe
 Matter = three generations of 16 spin-¹/₂ fermions
 Forces = electromagnetic, weak and strong
 via G = SU(3)_c × SU(2)_w × U(1)_Y gauge symmetry.

... but both theories are incomplete and possibly even inconsistent: singularities and infinities!

Symmetry and Unification

Like a ferromagnet: symmetry is broken more and more with decreasing temperature as universe expands.

Disclaimer

- There is at this time no evidence from experiment or observation for any particular approach to quantum gravity and a fully unified theory, in spite of numerous *ansätze* and proposals.
- No particular proposal at this time can claim to offer a compelling explanation for the observed low energy physics (Standard Model) or recent cosmological observations (inflation, dark energy).

In fact...

• The 'tension' between *fundamental* theory and observation has become even more pronounced with recent experimental data (LHC, PLANCK,...).

So where do we go from here?

Idea: symmetry enhancement as a guiding principle!

• Grand Unification:

 $SU(3)_c \times SU(2)_w \times U(1)_Y \subset SU(5) \subset SO(10) \subset E_6 \subset \ldots?$

 \rightarrow quark lepton unification, proton decay, ...

- 'Fusion' of space-time and internal symmetries?
- Duality symmetries, e.g. electromagnetic duality $\mathbf{E} + i\mathbf{B} \rightarrow e^{i\alpha} (\mathbf{E} + i\mathbf{B}) , \quad q + ig \rightarrow e^{i\alpha} (q + ig)$

• Quantum symmetry and quantum space-time? **QUESTION**: is it possible to pin down the 'right' theory simply by imposing a symmetry principle?

Supersymmetry

Or: the search for exceptionality in physical theories!

- A new kind of symmetry relating Bosons \leftrightarrow Fermions. Or: Forces (vector bosons) \leftrightarrow Matter (quarks & leptons)?
- Probably one of the most important developments in mathematical physics over the last 40 years.
- Supersymmetry is generally believed to be essential for constructing a perturbatively consistent (finite) theory of quantum gravity.
- Discovery of supersymmetry at LHC would open many new avenues and revolutionize particle physics. (But indications so far from ATLAS and CMS are not encouraging for *low energy supersymmetry* ...)

Supersymmetry in a Nutshell

Simple example: supersymmetric quantum mechanics with supercharge Q, Q^{\dagger} and Hamiltonian H:

$$H = \frac{1}{2} \{ Q, Q^{\dagger} \} \Rightarrow [Q, H] = [Q^{\dagger}, H] = 0$$

Hence for any eigenstate $|E\rangle$ (with E > 0) we have

$$H|E\rangle = E|E\rangle \ \Rightarrow \ H(Q|E\rangle) = E(Q|E\rangle)$$

 \Rightarrow degeneracy of bosonic/fermionic energy levels.

 $[\rightarrow$ equal masses for bosons and fermions in supersymmetric quantum field theory.]

New mathematical concept: Superalgebra contains commutators and anticommutators (\equiv graded Lie algebra with \mathbb{Z}_2 grading $(-1)^F$ and fermion number F).

Supersymmetric (Quantum) Field Theory

For (semi-)realistic field theories need to 'marry' supersymmetry with other symmetries (Poincaré and internal symmetries): $P_{\mu}, M_{\mu\nu}, \ldots$.

Supercharges Q_{α}^{i} and $\bar{Q}_{\dot{\alpha}j}$ are now *space-time spinors*. The key relation of the relativistic superalgebra is

$$\{Q^i_{\alpha}, \, \bar{Q}_{\dot{\beta}j}\} = 2\delta^i_j \sigma^{\mu}_{\alpha\dot{\beta}} P_{\mu}$$

N-extended supersymmetry (for i, j = 1, ..., N) merges spacetime and internal symmetries when $N \ge 2$.

In QFT, supersymmetry entails (partial) cancellations of UV infinities in Feynman diagrams, e.g. only *logarithmic* instead of quadratic divergences \rightarrow solve (or alleviate) hierarchy problem with MSSM or NMSSM?

Representations (Supermultiplets)

For massless multiplets use Wigner method by starting from states of highest helicity $|h\rangle$:

$$|h\rangle, |h - \frac{1}{2}; i\rangle \equiv Q^{i}|h\rangle, |h - 1; [ij]\rangle \equiv Q^{i}Q^{j}|h\rangle, \cdots$$

Theories become more and more restricted with increasing N, and *unique* for maximal supersymmetry. \rightarrow distinguish two possibilities (with N supercharges):

- Global (= rigid) supersymmetry: $s \le 1 \iff N \le 4$ N = 4 multiplet: $1 \times [1] \oplus 4 \times [\frac{1}{2}] \oplus 6 \times [0]$
- Local supersymmetry (supergravity): $s \leq 2 \leftrightarrow N \leq 8$

N = 8 multiplet: $1 \times [2] \oplus 8 \times \left[\frac{3}{2}\right] \oplus 28 \times [1] \oplus 56 \times \left[\frac{1}{2}\right] \oplus 70 \times [0]$

N = 8 Supergravity (I)

Unique theory (modulo 'gauging'), most symmetric known field theoretic extension of Einstein's theory!

$1 \times [2] \oplus 8 \times \left[\frac{3}{2}\right] \oplus 28 \times [1] \oplus 56 \times \left[\frac{1}{2}\right] \oplus 70 \times [0]$

- General covariance and local Lorentz symmetry
- N = 8 local supersymmetry
- SU(8) R-symmetry (local or rigid)
- Linearly or non-linearly realized duality symmetry $E_{7(7)}$

The unexpected 'hidden' $E_{7(7)}$ symmetry is a *dual-ity symmetry* combining 28 'electric' vector fields and their 28 'magnetic' duals into a single 56 of $E_{7(7)}$.

N = 8 Supergravity (II)

N = 8 Supergravity (III)

In the late 1970s this theory was thought to be a promising candidate for a unified theory of quantum gravity and matter interactions. However,

- Existence of supersymmetric counterterms suggested the appearance of non-renormalizable infinities from three loops onwards;
- Its properties [absence of chiral fermions, huge negative cosmological constant for gauged theory] seem to be in obvious conflict with observations.

And: in both regards superstring theory seemed to do much better!

BUT: remarkable recent progress on UV finiteness...

Finiteness: to be or not to be?

Einstein gravity is *perturbatively non-renormalizable*

$$\Gamma_{div}^{(2)} = \frac{1}{\varepsilon} \frac{209}{2880} \frac{1}{(16\pi^2)^2} \int dV C_{\mu\nu\rho\sigma} C^{\rho\sigma\lambda\tau} C_{\lambda\tau}{}^{\mu\nu}$$

where $C_{\mu\nu\rho\sigma} =$ Weyl tensor. [Goroff, Sagnotti(1986); van de Ven(1992)]

NB: calculation of the coefficient $\frac{209}{2880}$ requires consideration of $\mathcal{O}(100\,000)$ Feynman diagrams!

It can be shown that this 2-loop counterterm does not allow for a supersymmetric extension. At three loops, a possible supersymmetric invariant can be built by squaring the Bel-Robinson tensor.

Hence, supergravity can be expected to be UV infinite from three loops onwards!

However, for N = 8 supergravity computation of 3-loop counterterm coefficient would require consideration of $\mathcal{O}(10^{xxx})$ Feynman diagrams \rightarrow hopeless? ...

NO! Completely new technology makes possible a breakthrough: [Bern,Carrasco,Dixon,Johansson,Roiban, PRL103,081301(2009)]

... but must forget just about all textbook wisdom!

- Obtain on-shell field theory amplitudes as limits of on-shell string amplitudes.
- Use methods from S-matrix theory: unitarity, analyticity, cutting rules, dispersion relations, etc.
- Gravity amplitudes from 'squaring' Yang Mills amplitudes by means of KLT rules [Kawai,Lewellen,Tye(1986)]

 $M_4^{tree}(1,2,3,4) = -is_{12}A_4^{tree}(1,2,3,4)A_4^{tree}(1,2,4,3)$

Four-loop finiteness of N = 8 supergravity

[Bern, Carrasco, Dixon, Johansson, Roiban, PRL103, 081301 (2009)]

- Exploit Gravity = (Yang-Mills $)^2$.
- Use unitarity based arguments to reduce all amplitudes to integrals over products of tree amplitudes.
- All particles are on-shell \rightarrow only 3-point vertices.
- Instead of $\mathcal{O}(10^{xxx})$ Feynman diagrams need only calculate $\mathcal{O}(50)$ 'Mondrian-like' diagrams!

Beyond L = 4 loops

There is now mounting evidence from different sources that N = 8 supergravity is UV finite at L < 7 loops:

- spectacular computational advances (see above...)
- MHV, NMHV,... amplitude considerations (idem)
- exploiting nonlinear symmetries (SUSY, $E_{7(7)}$,...)
- ... and could thus be UV finite to *all* orders!

BUT L = 7 requires 10^{xxxx} Feynman diagrams! AND:

- Even if N = 8 supergravity is finite, (non-linear) E_7 and SUSY may not be enough to prove it.
- Even if it is finite we still do not understand what 'happens' to space and time at the Planck scale.

A strange coincidence?

Supergravity and Standard Model assignments agree if spurion charge is chosen as $q = \frac{1}{6}$ [Gell-Mann (1983)] Realized at $SU(3) \times U(1)$ stationary point! [Warner,HN: NPB259(1985)412] Mismatch of $\pm \frac{1}{6}$ can be fixed by deforming U(1) [Meissner,HN:1412.1715] [... just in case LHC keeps *not* finding new fundamental spin- $\frac{1}{2}$ fermions...] Exceptional Symmetries and Supergravity Continuing on the road towards more symmetry!

- Recall: N = 8 supergravity in D = 4 has more symmetry than meets the eye: $E_{7(7)}$! [Cremmer, Julia, 1979]
- An unsuspected link: all of the *five exceptional Lie groups* G_2, F_4, E_6, E_7, E_8 with their non-compact real forms appear naturally in extended supergravities!
- For instance all maximal supergravities in $D \neq 4$: $E_{n(n)}$ for maximal supergravity in D = 11 - n.

Below D = 3 symmetries become *infinite-dimensional*:

- $E_{9(9)} \equiv E_8^{(1)}$ for maximal supergravity in D = 2.
- ... suggests $E_{10(10)}$ for D = 1: no space, only time?!?

Another hint: BKL and Spacelike Singularities

For $T \rightarrow 0$ spatial points decouple and the system is effectively described by a continuous superposition of one-dimensional systems \rightarrow effective dimensional reduction to D = 1! [Belinski,Khalatnikov,Lifshitz (1972)]

What is E_{10} ?

(No one knows, really....)

 E_{10} is the 'group' associated with the Kac-Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ defined via the Dynkin diagram [e.g. Kac]

Defined by generators $\{e_i, f_i, h_i\}$ and relations via Cartan matrix A_{ij} ('Chevalley-Serre presentation')

$$[h_i, h_j] = 0, \qquad [e_i, f_j] = \delta_{ij}h_i, [h_i, e_j] = A_{ij}e_j, \qquad [h_i, f_j] = -A_{ij}f_j, (ad e_i)^{1-A_{ij}}e_j = 0 \quad (ad f_i)^{1-A_{ij}}f_j = 0.$$

 \mathfrak{e}_{10} is the free Lie algebra generated by $\{e_i, f_i, h_i\}$ modulo these relations \rightarrow infinite dimensional as A_{ij} is *indefinite* \rightarrow Lie algebra of *exponential growth* !

Infinite Complexity from simple recursion

A Mandelbrot set generated from $z_{n+1} = f_c(z_n)$.

Vistas into E_{10} ...

[from: Teake Nutma (formerly University of Groningen, now at AEI)]

What is so special about E_{10} ?

- E_{10} occupies a uniquely distinguished place among all infinite-dimensional Lie algebras (much like E_8 among the finite-dimensional Lie algebras)
- Near the initial singularity (for $0 < T < T_{Planck}$) the dynamics of maximal supergravity 'asymptotes' to a 'cosmological billiards' system based on E_{10} .
- E_{10} may provide *Lie-algebraic mechanism* for the 'de-emergence' of space and time near the big bang.
- E_{10} 'knows all' about maximal supersymmetry.

E_{10} : The Basic Picture

Conjecture: for $0 < T < T_P$ space-time 'de-emerges', and space-time based (quantum) field theory is replaced by (quantized) $E_{10}/K(E_{10}) \sigma$ -model [Cf. DN, 0705.2643]

Outlook

- Symmetry by no means exhausted as a *guiding principle of physics* but many open questions remain.
- Both N = 8 supergravity and E_{10} are uniquely distinguished by their symmetry properties.
- E₁₀ 'knows all' about maximal supersymmetry and unifies many known (S, T, U, ...) string dualities. [so supersymmetry may not be as fundamental as we thought...]
- Exponentially increasing complexity of E_{10} algebra \rightarrow an element of *non-computability* for $T \rightarrow 0$?
- Either way, we have to come to grips with *infinity* as we try to understand the origin of the universe.

Outlook

- Symmetry by no means exhausted as a *guiding principle of physics* but many open questions remain.
- Both N = 8 supergravity and E_{10} are uniquely distinguished by their symmetry properties.
- E_{10} 'knows all' about maximal supersymmetry and unifies many known (S, T, U, ...) string dualities. [so supersymmetry may not be as fundamental as we thought...]
- Exponentially increasing complexity of E_{10} algebra \rightarrow an element of *non-computability* for $T \rightarrow 0$?
- Either way, we have to come to grips with *infinity* as we try to understand the origin of the universe.

THANK YOU