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Chapter 1
The Conformal Algebra and Conformal
Manifolds

A special class of Quantum Field Theories (QFTs) are those that have no intrinsic
length scale. This happens when the correlation length of the corresponding theory
on the lattice diverges. In addition, such theories often arise when we take generic
QFTs and scale the distances to be much larger or much smaller than the typical in-
verse mass scales. Of course, one may sometimes encounter gapped theories at long
distances, but there are also many examples in which one finds nontrivial theories
in this way.

In general, we are interested here in QFTs which are invariant under the Poincaré
group of R4. The Poincaré group consists of rotations in SO(4) (generated by Mµn ,
with (µ,n = 1, ...,4)) and translations (generated by Pµ ). If the theory has no in-
trinsic length scale then the Poincaré group is enhanced by adding the generator
of dilations, D . Oftentimes, the symmetry is further enhanced to SO(5,1), which
includes the original Poincaré generators, the dilation D , and the so-called special
conformal transformations Kµ .

The commutation relations are
⇥
D ,Pµ

⇤
= Pµ ,

⇥
D ,Kµ

⇤
= �Kµ ,

⇥
Kµ ,Pn

⇤
= 2

�
dµn D � iMµn

�
,

⇥
Mµn ,Pr

⇤
= i
�
dµr Pn �dnr Pµ

�
,

⇥
Mµn ,Kr

⇤
= i
�
dµr Kn �dnr Kµ

�
,

⇥
Mµn ,Mrs

⇤
= i
�
dµr Mns +dns Mµr �dnr Mµs �dµs Mnr

�
.

They can be realized by the differential operators acting on R4:

Mµn = �i
�
xµ ∂n � xn ∂µ

�
,

Pµ = �i∂µ ,

Kµ = i
�
2xµ x.∂ � x2∂µ

�
,

D = x.∂ .
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A primary operator, F(x), is, by definition, an operator that is annihilated by Kµ
when placed at the origin:

[Kµ ,F(0)] = 0 . (1)

The origin of R4 is fixed by rotations and dilations. Therefore we can characterise
F(0) by its quantum numbers under rotations and dilations. In d = 4 the group of
rotations, SO(4), is just SU(2)⇥ SU(2) and hence a primary operator is labeled
by ( j1, j2;D).1 We will be only interested in unitary theories, where the allowed
representations of the conformal algebra do not have negative-norm states.

It is sometimes the case that the conformal field theory has primary operators of
dimension 4,

[D ,OI(x)] = i(x.∂ +4)OI(x) .

If we add such operators to the action with couplings l I then we get

S ! S+Â
I

l I
Z

d4xOI(x) . (2)

A simple example is the free conformal field theory in d = 4 to which we can add a
quartic interaction. The coupling l I is dimensionless but in general there may be a
nontrivial beta function

b I ⌘ dl I

d log µ
= (b (1))I

JKl Jl K + · · · . (3)

Therefore, conformal symmetry is broken at second order in l . (If we add to the
action an operator of D 6= 4 then conformal symmetry is already broken at first
order in the coupling constant.)

We can compute the (b (1))I
JK by imagining a correlation function h· · ·i which we

expand as a function of l I . We get

h· · ·il=0 �l I
Z

d4xhOI(x) · · ·il=0 +
1
2

l Jl K
Z

d4y
Z

d4zhOJ(y)OK(z) · · ·il=0 + ...

There is a logarithmic divergence from y ! z due to the OPE

OJ(y)OK(z)⇠CI
JK

OI(y)
(y� z)d

We now imagine integrating a-la Wilson from some UV cutoff µUV to some lower
cutoff µ so we pick Vol(S3) log(µUV/µ). (Recall Vol(S3) = 2p2.) Therefore, we see
that an effective scale dependent coupling is generated, l I(µ), such that

l I(µ) = l I(µUV )�p2l J(µUV )l K(µUV )CI
JK log

✓
µUV

µ

◆
+ · · · .

1 If there is a global symmetry G , then the primary operators would furnish some representations
of G .
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Therefore,
d

d log µ
l I = p2CI

JKl Jl K + · · · .

This allows to identify the “one-loop” beta functions with the corresponding OPE
coefficients

(b (1))I
JK =CI

JK .

Exercise 1 (easy): Check that this gives the correct one-loop beta function
for the f 4 theory

Exercise 2 (hard): Extend this theory to order l 3

Under some special circumstances it may happen that b I = 0 as a function of l I

(to all orders). Then we say that the deformation (2) is exactly marginal. We there-
fore have a manifold of conformal field theories, M , with coordinates {l I}. This
manifold has a natural Riemannian structure given by the Zamolodchikov metric

hOI(0)OJ(•)i{l I} = gIJ(l I) . (4)

A primary operator F(•) is defined by the limit F(•) = limy!• y2D F(y) with D
being the dimension of F . This endows the conformal manifold M with a Rieman-
nian structure. We cannot put globally gIJ(l I) = dIJ but we can do it at some given
point, p, analogously to choosing Riemann normal coordinates in some patch that
includes p 2 M .

In Quantum Field Theory, the usual freedom in choosing a metric is reflected by
a redefinition of the coupling constants. We can replace (2) with

S ! S+Â
I

FI(l J)
Z

d4xOI(x) . (5)

This only differs from (2) by what one means by the coupling constant. The metric
is now given by

∂FJ

∂l I
∂FK

∂l J gJK ,

which is the usual transformation rule for the metric. The Riemann tensor carries the
information about the obstruction to putting the metric to dIJ in some patch. Let us
take some Riemann normal coordinates centred at l I = 0. Then the Riemann tensor
is given by

Ri jkl =
Z

A
d4zhOi(0)Ok(z)Ol(1)O j(•)i� k $ l ,

with the region A defined as

A ⌘ {z 2 R4| |z|< |1� z|, |z|< 1} .

Exercise 3: Show that this definition respects the anti-symmetry of the Rie-
mann tensor in the i � j indices and it satisfies the interchange symmetry
Ri jkl = Rkli j.
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One situation in which exactly marginal operators are common is in Super-
Conformal Field Theories (SCFTs). The conformal algebra is enlarged by adding
N Poincaré supercharges Qi

a , Q̄iȧ and N superconformal supercharges Sa
i , S̄

iȧ

(i = 1, ..,N ). In addition, we must add the R-symmetry group, U(N ), whose gen-
erators are Ri

j. This furnishes the superalgebra SU(2,2|N ).
We do not list all the commutation relations. They can be found in [5]. All we

need to know for our purposes is summarised below.
Our main interest in this note lies in N = 2 theories. The maximally super-

symmetric theory with N = 4 would be a special case. The R-symmetry group in
N = 2 theories is SU(2)R ⇥U(1)R. We denote the U(1)R charge by r.

• It is consistent to impose at the origin, in addition to (1),

[Sa
i ,F(0)] = [S̄iȧ ,F(0)] = 0 .

(The quantum numbers of F(0) are omitted.) Such operators are called supercon-
formal primaries. In every unitary representation the operators with the lowest
eigenvalues of D are superconformal primaries.

• If one further imposes
[Q̄iȧ ,F(0)] = 0 , (6)

one obtains a short representation (such representations may or may not exist in a
given model). The operator F(0) satisfying (6) is called a chiral primary.2 Chiral
primary operators are necessarily SU(2)R singlets and they obey a relationship
between their U(1)R charge and their scaling dimension

D = r .

• Marginal operators that preserve N = 2 supersymmetry are necessarily the de-
scendants of chiral primary operators with D = r = 2. We can upgrade the for-
mula (2) to a superspace formula

S ! S+l I
Z

d4x d4qFI(x,q)+ l̄ Ī
Z

d4x d4q̄ F̄Ī(x, q̄) . (7)

which shows that N = 2 supersymmetry is indeed preserved. We denote the
dimension 4 descendant of FI by OI . Therefore, (7) is just

S ! S+l I
Z

d4x OI(x)+ l̄ Ī
Z

d4x ŌĪ(x) . (8)

The Zamolodchikov metric is defined by the two-point function hOI(•)ŌJ̄(0)i.
(This is proportional to hFI(•)F̄J̄(0)i.)

One can actually prove that for the deformations (7) the beta function b I = 0
identically. The argument is along the lines of [11]. There is a scheme in which the

2 We henceforth assume chiral primary operators carry no spin, see [4] for a discussion.
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superpotential is not renormalized. Then if the beta function is nonzero it has to be
reflected by a D-term in the action

R
d4x d8qO with O some real primary operator.

But since the l I are classically dimensionless, D(O) = 0 in the original fixed point.
Therefore, O has to be the unit operator and the deformation

R
d4x d8qO is therefore

trivial. This proves that b I = 0.
The {l I , l̄ Ī} are therefore coordinates on the manifold M of N = 2 SCFTs.

It readily follows from (7) that the manifold M is Hermitian in this case. Indeed,
the allowed changes of variables in (7) are holomorphic l I ! FI(l J) and there-
fore there is a complex structure on M . The only non-vanishing components of the
metric are the mixed components, given by hOI(•)ŌJ̄(0)i, and therefore the mani-
fold M is Hermitian. (The other components of the metric vanish by a SUSY Ward
identity.)

Soon we will argue that M is a Kähler manifold, i.e. the Zamolodchikov met-
ric (4) satisfies

gIJ̄ = ∂I∂J̄K(l I , l̄ Ī) . (9)

Then we will argue that the Kähler potential can be extracted from the S4 partition
function and we will use supersymmetric localization to compute it in some simple
N = 2 SCFTs. Large parts of this discussion follows [10].

In order to understand these ideas we have to first go through the theory of quan-
tum anomalies.





Chapter 2
Anomalies in Two-Dimensional Models

We consider Euclidean two-dimensional theories that enjoy the isometry group of
R2. Namely, the theories are invariant under translations and rotations in the two
space directions. If the theory is local it has an energy momentum tensor operator
Tµn which is symmetric and conserved Tµn = Tnµ , ∂ µ Tµn = 0. These equations
should be interpreted as operator equations, namely they must hold in all correlation
functions except, perhaps, at coincident points. Here we will study theories where,
when possible, these equations hold in fact also at coincident points. In other words,
we study theories where there is no local gravitational anomaly. See [17] for some
basic facts about theories violating this assumption.

We can study two-point correlation functions of the energy-momentum operator.
This correlation function is highly constrained by symmetry and conservation. It
takes the following most general form in momentum space:

hTµn(q)Trs (�q)i= 1
2
��

qµ qr �q2hµr)(qn qs �q2hns
�
+r $ s

�
f (q2)

+(qµ qn �q2hµn)(qr qs �q2hrs )g(q2) .
(10)

The most general two-point function is therefore fixed by two unknown functions of
the momentum squared. (Note that above we have stripped the trivial delta function
enforcing momentum conservation.)

The form (10) holds in any number of dimensions. In two dimensions the two
functions f (q2) and g(q2) are not independent.

Exercise 4: Show that the two kinematical structures in (10) are not inde-
pendent in two dimensions.

Now let us make a further assumption, that the theory is scale invariant (but not
necessarily conformal invariant). This allows us to fix the two functions f , g up to a
constant3

f (q2) =
b
q2 , g(q2) =

d
q2 . (11)

3 A logarithm is disallowed since it violates scale invariance. (The rescaling of the momentum
would not produce a local term.)

9
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We can now calculate the two-point function hT µ
µ (q)T µ

µ (�q)i

hT µ
µ (q)T µ

µ (�q)i= (b+d)q2 . (12)

Transforming back to position space this means that hT µ
µ (x)T µ

µ (0)i⇠ (b+d)⇤d (2)(x).
In particular, at separated points the correlation function vanishes:

hT µ
µ (x)T n

n (0)ix 6=0 = 0 . (13)

In unitary theories, this means that the trace itself is a vanishing operator T µ
µ = 0

(since it creates nothing from the vacuum, it must be a trivial operator). This is
called the Reeh-Schlieder theorem [18].

The operator equation
T µ

µ = 0 (14)

is precisely the condition for having the full conformal symmetry of R2, SO(3,1),
present.

In fact, in two-dimensions, (14) is sufficient to guarantee an infinite symmetry
group (the Virasoro algebra). This is because (in complex coordinates) Tzz obeys
∂̄Tzz = 0 and so it can be multiplied by an arbitrary holomorphic function and still
remain conserved. We will elaborate on that a little more later.

The equation (14) is satisfied in all correlation functions at separated points, but
it may fail at coincident points. We have already seen this phenomenon in (12). Such
contact terms signal an anomaly of SO(3,1). Other than this potential anomaly, (14)
means that SO(3,1) is a perfectly good symmetry of the theory. Therefore, we
see that scale invariant theories are necessarily conformal invariant in two dimen-
sions [19].4

More generally, we find

hT r
r (q)Tµn(�q)i=�(b+d)(qµ qn �q2hµn) , (15)

which is again a polynomial in momentum and hence a contact term in position
space, consistently with (14). One may wonder at this point whether there exist
Quantum Field Theories for which these contact terms are absent because b+d = 0.
Consider the correlation function hT11T11i. This has support at separated points. It
is proportional to b+d.

Exercise 5: In light of exercise 4, is this a coincidence?

Therefore, in unitary theories, from reflection positivity (i.e. Reeh-Schlieder the-
orem) it follows that

b+d > 0 . (16)

So far we have seen that scale invariant theories in fact enjoy SO(3,1) symme-
try, but the symmetry is afflicted with various contact terms such as (15). To see

4 Some technical assumptions implicit in the argument above are spelled out in [19], where the
argument was first developed.
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clearly the physical meaning of this anomaly, we can couple the theory to some am-
bient curved space (there is no dynamics associated to the curved space, it is just a
background field). This is done to linear order via ⇠

R
d2xT µn hµn , where hµn is the

linearized metric gµn = hµn + hµn . Hence in the presence of a background metric
that deviates only slightly from flat space

hT µ
µ (0)igµn ⇠

Z
d2xhT µ

µ (0)T rs (x)ihrs (x)⇠ (b+d)
Z

d2x
�
∂ r ∂ s d 2(x)�hrs⇤d 2(x)

�
hrs

⇠ (b+d)(∂ r ∂ s �hrs⇤)hrs .
(17)

The final object (∂ r ∂ s �hrs⇤)hrs is identified with the linearized Ricci scalar. In
principle, if we had analyzed three-point functions of the energy-momentum tensor
and so forth, we would have eventually constructed the entire series expansion of the
Ricci scalar. Therefore, the expectation value of the trace of the energy-momentum
tensor is proportional to the Ricci scalar of the ambient space. This is the famous
two-dimensional trace anomaly. It is conventional to denote the anomaly by c (and
not by b+d as we have done so far). The usual normalization is

T =� c
24p

R . (18)

c is also referred to as the “central charge” but we will not emphasize this representation-
theoretic interpretation here. Our argument (16) translates to c > 0.

There is a very useful consequence of (49). Consider the conservation equation
in curved space —µ Tµn = 0. If we switch to local complex coordinates with a Her-
mitian metric

ds2 = ej dzdz̄ ,

then the conservation equation takes the form

∂z̄Tzz + ej ∂z(e�j Tzz̄) = 0 .

But in two dimensions we have the relation (49) so we can substitute this into the
second term of the equation above. It is useful to remember that R =�4e�j ∂ ∂̄j .

This implies that we can definite a holomorphic energy-momentum tensor

T 0
zz = Tzz +ac

�
�(∂j)2 +2∂ 2j

�
. (19)

Exercise 6: Fix the numerical coefficient a and verify the appearance of the
Schwartzian derivative below.

The advantage of T 0 is that it is holomorphic, but the disadvantage is that it
transforms non-covariantly under holomorphic coordinate transformations z ! f (z)
(because j shift in-homogeneously). T 0 is what is actually used in most of the lit-
erature on 2d CFTs, and the prime is usually omitted. The in-homogenous piece in
the transformation rule is the so-called Schwartzian derivative
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z ! w(z) , {w,z}= wzzz

wz
� 3

2

✓
wzz

wz

◆2
. (20)

Using (18) we can present another useful interpretation of c. Consider a two-
dimensional conformal field theory compactified on a two-sphere S2 of radius a,

ds2 =
4a2

(1+ |x|2)2

2

Â
i=1

(dxi)
2 , |x|2 =

2

Â
i=1

(xi)
2 . (21)

The Ricci scalar is R = 2/a2. Because of the anomaly (49), the partition function

ZS2 =
Z
[dF ]e�

R
S2 L (F) (22)

depends on a. (If the theory had been conformal without any anomalies, we would
have expected the partition function to be independent of the radius of the sphere.)
We find that

d
d loga

logZS2 =�
Z

S2

p
ghT i= c

24p

Z

S2

p
gR =

c
24p

2
a2 Vol(S2) =

c
3
. (23)

Thus the logarithmic derivative of the partition function yields the c anomaly. This
particular interpretation of c will turn out to be very useful later.

The discussion in this section could have been simplified a lot by using light
cone or holomorphic coordinates. But we have not done that in order to facilitate
the comparison with d > 2. We will come back to the energy momentum tensor in
d = 2 below, where we will use light-cone coordinates.

1 ’t Hooft Anomalies in d = 2

We would like to imagine some renormalization group flow and we study a U(1)
symmetry present along the flow, associated to a current obeying

p+ j�+ p� j+ = 0 . (24)

We have now in general three two-point correlation functions

h j+ j+i= p2
+

a(p2)

p2 , h j+ j�i=�b(p2) , h j� j�i= p2
�

c(p2)

p2 .

The functions a,b,c are all dimension 0. Conservation relates a = b = c. But again
these have to interpreted just as equations for the imaginary part (i.e. separated
points upon studying the conservation equations). So we are allowed to add a con-
stant to the real part. Therefore the most general solution is
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h j+ j+i=
p2
+

p2

�
a(p2/M2)+ kL

�
,

h j+ j�i=�
�
a(p2/M2)+ k

�
,

h j� j�i=
p2
�

p2

�
a(p2/M2)+ kR

�
.

Above kL and kR clearly affect the correlation functions at separated points but k is
just a contact term that we can set to whatever we want.

If kL = kR then we can respect the conservation equation also at coincident points
by choosing k = kL = kR. However if kL 6= kR there is no preferred choice for k and
we will just set k = 0. Therefore, our final result is

h j+ j+i=
p2
+

p2

�
a(p2/M2)+ kL

�
,

h j+ j�i=�a(p2/M2) ,

h j� j�i=
p2
�

p2

�
a(p2/M2)+ kR

�
. (25)

We would like to identity the kL,R as the current algebra levels in the UV so we
take (without loss of generality)

lim
p2!•

a(p2/M2) = 0 .

Notice that in the ultraviolet, i.e. setting a = 0, we can flip the sign of j� and still get
the same correlation functions, which means that also the equation p� j+� p+ j� =
0 is obeyed up to coincident point anomalies. Suppose in the ultraviolet we had kL =
kR. Then, the equation p� j+� p+ j� = 0 is obeyed including at coincident points
if we re-introduce the seagull contact-term k. So the (’vector’) current ( j+, j�) is
non-anomalous. But the (’axial’) current ( j+,� j�) is anomalous. We have

h(p� j+� p+ j�) j+i= kp+

and
h(p� j+� p+ j�) j�i=�kp�

Upon coupling j+A� + j�A+, i.e. we introduce our vector-like gauge field A, we
thus see that

∂ jAxial ⌘ ∂� j+�∂+ j� = k ?FVector . (26)

Hence, the divergence of the axial current contains the field-strength of the vector
gauge field.

If kL 6= kR then the vector gauge field itself is already anomalous in the ultraviolet
but the analog of the equation (27) depends on the arbitrary constant k which we
have no preferred way of fixing. One gets a somewhat nice answer if one takes
k = 1

2 (kL + kR),

∂ jVector ⌘ ∂� j++∂+ j� = (kL � kR)?FVector . (27)
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but for other choices one does not even get the field strength on the right hand side.
Coming back to (25), we can denote the infrared limit of the function a

lim
p2!0

a(p2/M2) = g .

Then we readily identify

kIR
L = kUV

L + g , kIR
R = kUV

R + g .

The difference between the current algebra levels remains invariant under the flow.
This is a derivation of the anomaly matching first suggested by ’t Hooft.

2 Gravitational Anomaly Matching in d = 2

We reconsider the two-point functions of the energy momentum tensor and allow for
non-parity invariant pieces (which we previously omitted). This leads to a deriva-
tion of the gravitational anomaly matching in d = 2, which is, morally speaking,
analogous to the other anomaly matching conditions of ’t Hooft.

In the study of the two-point functions of the energy-momentum tensor in general
2d theories, we always insist on invariance under the Poincaré group, and, related to
that, the symmetry of the energy-momentum tensor in its two indices. We will see
that in general diffeomorphism invariance cannot be maintained, but we will insist
on maintaining Poincaré invariance in flat space.

We start from 6 functions

hT++T++i= p4
+ f1(p2) , hT++T+�i=�p2

+p2 f2(p2) , hT++T��i= p4 f3(p2) ,

hT+�T+�i= p4 f4(p2) , hT��T+�i=�p2
�p2 f5(p2) , hT��T��i= p4

� f6(p2) .

Conservation reads p+T��+ p�T+� = 0 and p�T++ + p+T+� = 0. We also used
the notation p2 = p+p�.

One finds after imposing conservation the following

f1 = f2 = f3 = f4 = f5 = f6 .

Now one has to be careful in the interoperation of these equations. They are only
true at separated points. More precisely, the actual equations that one finds are
p2 f1 = p2 f2 etc. These Ward identities should be interpreted to hold by the imagi-
nary part of f since the imaginary part always obeys all the classical Ward identi-
ties. Therefore, we can always add d (p2) to the imaginary part and still satisfy these
equations. This corresponds to adding pieces that look like 1/p2 to the functions fi.

Therefore the most general admissible solution takes the following form
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hT++T++i= p4
+

✓
1
p2 f (p2/M2)+

l1

p2

◆
, hT++T+�i=�p2

+p2
✓

1
p2 f (p2/M2)+

l2

p2

◆
,

hT++T��i= p4
✓

1
p2 f (p2/M2)+

l3

p2

◆
, hT+�T+�i= p4

✓
1
p2 f (p2/M2)+

l4

p2

◆
,

hT��T+�i=�p2
�p2

✓
1
p2 f (p2/M2)+

l5

p2

◆
, hT��T��i= p4

�

✓
1
p2 f (p2/M2)+

l6

p2

◆
.

The coefficients l2,3,4,5 respect the conservation equations at separated points
We can view these coefficients as arbitrary scheme choice that we can make. More
below.

We can choose without loss of generality the function f such that

lim
p!•

f (p2/M2) = 0 . (28)

This means that f scales with a positive power of the mass, i.e. f reacts to the
relevant perturbation in the UV. Then, we can identify

l1 = cUV
L , l6 = cUV

R .

So we write

hT++T++i=
1
p2 p4

+

�
f (p2/M2)+ cUV

L
�
, hT++T+�i=�p2

+

�
f (p2/M2)+l2

�
,

hT++T��i= p2 � f (p2/M2)+l3
�
, hT+�T+�i= p2 � f (p2/M2)+l4

�
,

hT��T+�i=�p2
�
�

f (p2/M2)+l5
�
, hT��T��i=

1
p2 p4

�
�

f (p2/M2)+ cUV
R
�
.

We see that if cUV
L 6= cUV

R we cannot obey the conservation Ward identities for the
real parts. Some local terms violate the Ward identities. But if cUV

L = cUV
R ⌘ c then

we can choose l2 = l3 = l4 = l5 = c and then the Ward identities for conservation
are obeyed both by the real and the imaginary part. Then one has a further theorem
that this can be done in all correlation functions.

If cUV
L 6= cUV

R , is there a preferred way to choose l2,3,4,5? well, actually, we can
just choose l2,3,4,5 = 0. This has the added value that it preserves T+� = 0 at coin-
cident points! Under normal circumstances we prefer to sacrifice the trace in order
to save diffeomorphisms. But if the central charges are different, diffeomorphisms
cannot be saved anyway so we can at least save the trace. Therefore we arrive at our
final result

hT++T++i= 1
p2 p4

+

�
f (p2/M2)+ cUV

L
�
, hT++T+�i=�p2

+ f (p2/M2 ,

hT++T��i= p2 f (p2/M2) , hT+�T+�i= p2 f (p2/M2) ,

hT��T+�i=�p2
� f (p2/M2) , hT��T��i=

1
p2 p4

�
�

f (p2/M2)+ cUV
R
�
.
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We can now easily prove the generalized ’t Hooft matching condition. When we
go to the infrared we have the general expansion

p2/M2 << 1 : f (p2/M2) = d +O(p2/M2)

This allows us to define the infrared central charges

cIR
L = cUV

L +d , cIR
R = cUV

R +d

and we see that the difference remains invariant.
In some sense, this means that massive degrees of freedom are ”parity even,”

meaning that they do not disturb the imbalance between right moving and left mov-
ing massless degrees of freedom.

3 Monotonicity Theorems in d = 2

The formalism developed above allows to prove some monotonicity theorems. We
first review the approach of Zamolodchikov and then generalize it slightly and
discuss the monotonicity theorems for U(1) currents [23]. We also discuss the c-
theorem in theories with a gravitational anomaly (a discussion of this problem ap-
peared in [51]).

We consider non-scale invariant theories, i.e. theories where there is some con-
formal field theory at short distances, CFTuv, and some other conformal field theory
(that could be trivial) at long distances, CFTir. Let us study the correlation functions
of the stress tensor in such a case, following [21]. To avoid having to discuss contact
terms (which were very important above) we switch to position space. We begin by
rewriting (10) in position space.

In terms of the complex coordinate z = x1 + ix2 the conservation equations are
∂z̄Tzz =�∂zT , ∂zTz̄z̄ =�∂z̄T , where T stands for the trace of the energy-momentum
tensor. We can parameterize the most general two point functions consistent with
the isometries of R2

hTzz(z)Tzz(0)i=
F(zz̄,M)

z4 ,

hT (z)Tzz(0)i=
G(zz̄,M)

z3z̄
,

hT (z)T (0)i= H(zz̄,M)

z2z̄2 .

(29)

In the above M stands for some generic mass scale of the theory. As we have seen in
our analysis above (10), we know that the conservation equation should bring down
the number of independent functions to two. Indeed, we find the following relations
Ḟ =�Ġ+3G, Ḣ�2H =�Ġ+G, where Ẋ ⌘ |z2| dX

d|z|2 , leaving two real undermined
functions (remember that G and F are complex).
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Using these relations one finds that the combination C ⌘ F � 2G� 3H satisfies
the following differential equation

Ċ =�6H . (30)

Exercise 7: Show (30)
However, since H is positive definite, the equation above means that C decreases

monotonically as we increase the distance. Let us now identify C at very short and
very long distances. At very short and very long distances it is described by the
appropriate quantities in the corresponding conformal field theories. As we have
explained above, in conformal field theory G,H are contact terms, hence can be
neglected as long we do not let the operators collide. On the other hand, F ⇠ c. (It
is easy to verify that F is sensitive only to the combination b+d as defined in (85).
Hence, it is only sensitive to c.)

This shows that C is a monotonic decreasing function that starts from cUV and
flows to cIR. Since the anomalies cUV , cIR are defined inherently in the correspond-
ing conformal field theories, this means that the space of 2d CFTs admits a natural
foliation and the renormalization group flow can proceed in only one direction in
this foliation. No cycles of the renormalization group are allowed.

One can think of c as a measure of degrees of freedom of the theory. In simple
renormalization group flows it is easy to understand that c should decrease since we
merely integrate out some massive particles. However, there are many highly non-
trivial renormalization group flows where there are emergent degrees of freedom,
and the result that

cUV > cIR (31)

is a strong constraint on the allowed emergent degrees of freedom.
We can integrate the equation (30) to obtain a certain sum rule

cUV � cIR ⇠
Z

d log |z2|H ⇠
Z

d2z|z2|hT (z)T (0)i> 0 . (32)

Since c can also be understood as the path integral over the two-sphere, the in-
equality (31) can also be interpreted as a statement about the partition function of
the massive theory on S2.

It is useful to consider non-parity invariant theories, where one can also prove
a c-theorem. This is done using the formalism we developed in the previous sec-
tions. It follows directly that if we consider the function ∂ 2

∂ p2 hT+�(p)T+�(�p)i, our
analysis shows that in the infrared this approaches the constant d while in the ultra-
violet it goes to zero. Therefore we can just write an explicit expression for the zero
momentum Fourier mode

d =�
Z

d2xx2hT+�(x)T+�(0)i .

This immediately shows that in unitary theory d < 0 and hence we have cIR
L < cUV

L ,
cIR

R < cUV
R . Thus the c-theorem holds even if there is a gravitational anomaly.
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A very similar argument allows to prove that the total current algebra level de-
creases along renormalization group flows (while the difference between left and
right remains constant, as we explained above)

Consider the integral
Z

d2xx2h∂� j+(x)∂� j+(0)i .

The operator ∂� j+ is redundant in the deep UV and so the integral above converges.
But in the conformal field theory itself we have h∂� j+(x)∂� j+(0)i = kL⇤d (2)(x),
which gives a contribution to the integral above. We can remove it by cutting a little
region away from x = 0. Therefore we get

kIR
L =�

Z

x2R2
e

d2xx2h∂� j+(x)∂� j+(0)i+ kUV
L , (33)

with R2
e being the plane without some small disc around the origin. Since the integral

is manifestly positive we have g < 0, which shows that the current algebra level can
just decrease (both the left and right handed current algebra levels decrease by the
same amount).

Note that during the flow, the axial symmetry is violated not just by an anomaly,
but operatorially. For compact groups, the integral in (33) would have to yield an
integer. Therefore, theories with k = 1 can only flow to theories without global sym-
metries in the infrared (all the charged states are massive).

4 Trace Anomalies in Four Dimensions

We saw that in two dimensions the natural monotonic property of the RG evolution
was tightly related to the trace anomaly in two dimensions. In three dimensions
the main role was played by the three-sphere partition function (there are no trace
anomalies in three dimensions).

In four dimensions there are two trace anomalies and the monotonic property of
renormalization group flows concerns again with these anomalies. The anomalous
correlation function is now

hTµn(q)Trs (p)Tgd (�q� p)i

And again, like in our analysis in two dimensions, there are contact-terms which are
necessarily inconsistent with T µ

µ = 0. In four dimensions it turns out that there are
two independent trace anomalies. Introducing a background metric field we have

T µ
µ = aE4 � cW 2 , (34)
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where E4 = R2
µnrs �4R2

µn +R2 is the Euler density and W 2
µnrs = R2

µnrs �2R2
µn +

1
3 R2 is the Weyl tensor squared. These are called the a- and c-anomalies, respec-
tively.

It was conjectured in [42] (and shortly after studied extensively in perturbation
theory in [43],[44]) that if the conformal field theory in the ultraviolet, CFTUV , is
deformed and flows to some CFTIR then

aUV > aIR . (35)

The four-dimensional c-anomaly does not satisfy such an inequality (this can be
seen by investigating simple examples) and also the free energy density divided by
the appropriate power of the temperature does not satisfy such an inequality.

In two and three dimensions we have seen that the quantities satisfying inequali-
ties like (31), (91) are computable from the partition functions on S2 and S3, respec-
tively. Similarly, in four dimensions, since the four-sphere is conformally flat, the
partition function on S4 selects only the a-anomaly. Indeed,

∂logr logZS4 =�
Z

S4

p
ghT µ

µ i=�a
Z

S4

p
gE4 =�64p2a .

In the formula above r stands for the radius of S4. Real scalars contribute to the
anomalies (a,c) = 1

90(8p)2 (1,3), Weyl fermion: (a,c) = 1
90(8p)2 (11/2,9), and a U(1)

gauge field: (a,c) = 1
90(8p)2 (62,36).

In four dimensions, a free gauge field is a conformal field theory because (83) is
traceless. So the problems with the free gauge field that we have discussed at great
length in three dimensions do not exist in four dimensions. (Similar issues arise for
the free two-form gauge theory, but this does not appear naturally in the ultraviolet
of interesting models in four dimensions.)





Chapter 3
Conformal Anomalies and the Zamolodchikov
Metric

Now that we have some experience with anomalies, we can discuss a more refined
type of trace anomaly. This anomaly is very important for the physics of conformal
manifolds. Let us for a moment consider the definition (4) more carefully, and in
arbitrary dimension. The Zamolodchikov metric on the conformal manifold is given
by

hOI(x)OJ(0)il =
gIJ(l )

x2d , (36)

where 0 6= x 2 Rd . In momentum space the two-point function (36) takes the form

hOI(p)OJ(�p)il ⇠ gIJ(l )

(
pd d = 2n+1
p2n log

⇣
µ2

p2

⌘
d = 2n (37)

with n 2 N. Thus, if we rescale µ the even-dimensional result will change by a
polynomial in p2 (delta function in position space). It follows that the separated
points correlation function is covariant under such rescaling while the coincident
points correlation function is not covariant. The appearance of such a logarithm in
conformal field theories signifies a conformal anomaly, which manifests itself as a
non-vanishing contribution to the trace of the stress-energy tensor. By promoting
the exactly marginal couplings l I to spacetime dependent background fields l I(x),
such that they act as sources of the exactly marginal operators OI(x), one can detect
a contribution to the trace anomaly of the schematic form

T µ
µ � gIJl I⇤ d

2 l J . (38)

The precise action of the derivatives in the formula above will be determined below.
The trace anomaly

⌦
T µ

µ
↵

can be derived from the variation of the free energy,
ds logZ, under an infinitesimal Weyl rescaling,

ds gµn = 2ds gµn , (39)

21
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where gµn is the spacetime metric. ds logZ must be local in gµn , ds and l , and
its form is constrained by the Wess-Zumino consistency condition, which is simply
the statement that Weyl transformations commute; ds ds 0 logZ = ds 0ds logZ. It also
needs to be invariant under coordinate transformations in spacetime, and under co-
ordinate transformations in the conformal manifold. If we have some symmetry that
is respected by the class of regulators we consider (supersymmetry for example),
we will require ds logZ to preserve this symmetry as well.

In addition, ds logZ is defined only up to terms that can be written as dsW for
some local functional W (which also needs to respect the symmetry constraints de-
scribed above), as such terms can be removed by adding local counterterms to the
free energy (in other words these terms can be removed by choosing an appropriate
regulator and therefore they do not contribute to the anomaly, which, by definition,
cannot be removed with any choice of regulator). Thus, in order to find the allowed
form of the anomaly one needs to solve a cohomology problem.

In two-dimensional CFTs, the local functional that produces the Weyl variation
of (37) is

ds logZ ⇠
Z

d2x
p

g dsgIJ∂µ l I∂ µ l J (40)

This manifestly satisfies the Wess-Zumino consistency condition. One can think of
this anomaly as a non-linear sigma model in the space of theories.

In four-dimensional CFTs, the local functional that produces the Weyl varia-
tion of (37) is much more complicated because the Laplacian squared is not Weyl-
covariant 5

ds logZ � 1
192p2

Z
d4x

p
g ds

✓
gIJ⇤̂l I⇤̂l J �2gIJ∂µ l I

✓
Rµn � 1

3
gµn R

◆
∂n l J

◆
,

(42)
where coordinate invariance in M requires introducing a connection

⇤̂l I =⇤l I +G I
JK∂ µ l J∂µ l K , (43)

and the Wess-Zumino consistency condition forces this connection to be the Christof-
fel connection on M :

G I
JK = gIR (∂KgRJ +∂JgRK �∂RgJK) . (44)

Exercise 8: Show that coordinate invariance in the space of coupling constants
together with the Wess-Zumino consistency conditions force the anomaly to
take the above form.

The anomaly (42) needs to be added to the well-known conformal anomalies:6

5 The normalization conventions here will be such that the exactly marginal deformation is

S ! S+
1

p2 l I
Z

d4x OI(x) . (41)

The convention we use for Rµnrs is [—µ ,—n ]Vr = RµnrsV s .
6 E4 denotes the Euler density and Cµnrs is the Weyl tensor.



Lectures Notes 23

ds logZ � 1
16p2

Z
d4x

p
g ds

�
cCµnrsCµnrs �aE4

�
, (45)

which do not depend on the coordinates l I .
Let us now discuss the N = 2 superconformal manifold. We will assume that the

superconformal theory is regulated in a way that preserves diffeomorphism invari-
ance and N = 2 supersymmetry, i.e. we assume that the physics at coincident points
is supersymmetric and diffeomorphism invariant.7 The assumption above constrains
the way the anomaly and the allowed counterterms can depend on the parameters
of the theory and on the spacetime geometry. A convenient way to implement these
constraints is to derive the anomaly and the counterterms as supergravity invariants
that are constructed from supergravity multiplets. For this sake the parameters of the
theory and of the geometry need to be embedded into supergravity multiplets.

According to equation (7) the exactly marginal operators are integrals over half
superspace of chiral and antichiral superfields with D = r = 2. Thus, the correspond-
ing couplings need to be realized as bottom components of chiral and antichiral
superfields, L I and L̄ Ī , with D = r = 0.8 In addition, the Weyl variation ds is em-
bedded in the bottom component of the chiral Weyl superfield dS (see, e.g. [13] for
details) and the integration measure

pg is promoted to the density measure super-
field E. In terms of these superfields, the supersymmetrization of the anomaly (42)
is given by the superspace integral

dS logZ � 1
192p2

Z
d4xd4q d4q̄ E(dS +d S̄)K(L I ,L̄ Ī) . (46)

When this integral is expanded in components, one finds (among many other terms)
the anomaly (42) with

gIJ̄ = ∂I∂J̄K . (47)

We therefore conclude that for N = 2 SCFTs, the Zamolodchikov metric is Kähler.
This statement, which is true also for N = 1 SCFTs, was proven in [1] using su-
perconformal Ward identities. The present derivation will allow to go much further.

Expanding (46) in components while keeping only the bottom component of L I ,
L̄ Ī and the metric background (setting the auxiliary fields in the gravity multiplet to
zero) one ends up with the following anomaly:

7 Note that we cannot assume that the coincident points physics is conformal invariant since this
would contradict (37).
8 Note that L I(x,q) = l I (with constant l I) is consistent with the supersymmetry variations of
a chiral multiplet, and that substituting this in

R
d4xd4qL I(x,q)FI(x,q)+ c.c. one gets equation

(7) back. After constructing the anomaly and counterterms in terms of the superfields L I(x,q),
L̄ Ī(x, q̄) we substitute the constant background values. We do a similar thing with the geometry
background parameters.
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dS logZ � 1
96p2

Z
d4x

p
g

(
dsRIK̄JL̄—µ l I —µ l J —n l̄ K̄ —n l̄ L̄

+dsgIJ̄

✓
⇤̂l I ⇤̂l̄ J̄ �2

⇣
Rµn � 1

3
Rgµn

⌘
—µ l I —n l̄ J̄

◆

+
1
2

K⇤2ds +
1
6

K —µ R—µ ds +K
✓

Rµn � 1
3

gµn R
◆

—µ —n ds

�2gIJ̄ —µ l I —n l̄ J̄ —µ —n ds + igIJ̄

⇣
—̂µ —̂n l I —n l̄ J̄ � —̂µ —̂n l̄ J̄ —n l I

⌘
—µ da

� i
2

⇣
—̂I—̂JK —µ l I—µ l J � —̂Ī—̂J̄K —µ l̄ Ī—µ l̄ J̄ +—IK ⇤̂l I �—ĪK ⇤̂l̄ Ī

⌘
⇤da

+ i
✓

Rµn � 1
3

Rgµn
◆⇣

—IK —µ l I �—ĪK —µ l̄ Ī
⌘

—n da

)
.

(48)
where, as before, the hats denote covariant derivatives with respect to coordinate
transformations in the conformal manifold, RIJ̄KL̄ = ∂I∂J̄gKL̄ � gMN̄ ∂IgKL̄ ∂J̄gMN̄ ,
and ds + ida is the bottom component of dS . Note that the anomaly (42) appears
in the second line.

Setting l , l̄ to constants, we remain with a non-vanishing contribution:

dS logZ � 1
96p2 K(l , l̄ )

Z
d4x

p
g

 
1
2
⇤2ds +

1
6

—µ R—µ ds +

✓
Rµn � 1

3
gµn R

◆
—µ —n ds

!

=ds

 
1

96p2 K(l , l̄ )
Z

d4x
p

g

"
1
8

E4 �
1

12
⇤R+ f (l , l̄ )C2

#!
,

(49)
where f (l , l̄ ) is an arbitrary function on M , E4 is the Euler density and Cµnrs is
the Weyl tensor.

Note that this expression is not cohomologically trivial. The second line in (49)
is written as a Weyl variation of a local term, but this is not a supersymmetric local
term. Thus, this contribution cannot be removed with a supersymmetric regulator.
In the next section we will show that, as a result of this term, the sphere partition
function has a universal (i.e. regularization independent) content - it computes the
Kähler potential on the superconformal manifold.



Chapter 4
Sphere Partition Functions

5 General Observations

Any conformal field theory on Rd can be placed on Sd using the stereographic pro-
jection. Since this map is a conformal transformation we can obtain correlation
functions in Rd from the corresponding correlation functions in Sd by applying the
inverse map. The sphere is compact and therefore the theory on the sphere is free
from infrared divergences. Since the sphere is locally equivalent to Rd , the ultravi-
olet divergences on the sphere are the same as in flat space. To understand whether
the sphere partition function is physical, we need to examine these ultraviolet diver-
gences carefully.

The ultraviolet divergences are classified by diffeomorphism invariant local
terms of dimension  d constructed from the background fields l i (i.e. the space-
time dependent coupling constants) and the space-time metric gmn. One starts from
the following general ansatz for the partition function as a function of the point l i

on the conformal manifold:

d = 2n : ZS2n = A1(l i)(rLUV )2n +A2(l i)(rLUV )2n�2 + ...+An(l i)(rLUV )2

+A(l i) log(rLUV )+F2n(l i) . (50)

d = 2n+1 : ZS2n+1 = B1(l i)(rLUV )2n+1 +B2(l i)(rLUV )2n�1 + ...+Bn+1(l i)(rLUV )
+F2n+1(l i) , (51)

where r is the radius of Sd . The power-law divergent terms correspond to countert-
erms of the type

L 2n�2k+2
UV

Z
d2nx

p
gAk(l i)Rk�1

in even dimensions and

L 2n�2k+3
UV

Z
d2n+1x

p
gBk(l i)Rk�1

25
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in odd dimensions. Therefore, all the power-law divergent terms in (50) and (51)
can be tuned to zero in the continuum limit.

In even dimensions, the sphere partition function has a logarithmic dependence
on the radius (see (50)), which cannot be canceled by a local counterterm. It is as-
sociated to the Weyl anomaly. The variation of the partition function under a Weyl
transformation with parameter s contains

R
d2nxpgsA(l i)E2n, where E2n is the

Euler density (the other terms in the Weyl anomaly vanish on the sphere, because
they are Weyl-invariant see [28]). However, this violates the Wess-Zumino consis-
tency condition unless A(l i) = A, i.e. A(l i) is a constant. This is then identified
with the usual A-type anomaly which we explained previously. The coefficient of
the logarithm is therefore independent of exactly marginal deformations.

Finally, the function F2n(l i) in (50) is ambiguous, as it can be removed by the
local counterterm Z

d2nx
p

gF2n(l i)E2n (52)

In summary, we have shown that the only physical data in the continuum limit of
ZS2n is the A-anomaly, which is independent of the exactly marginal parameters.

For odd dimensions, absent additional restrictions on the counterterms, we have
seen above that all the Bi are ambiguous and can be tuned to zero (a logarithmic
term is absent because one cannot write an appropriate local anomaly polynomial
in odd dimensions.) Importantly, however, there is no counterterm for F2n+1(l i) in
(51). More precisely, the only conceivable dimensionless counterterm would be a
gravitational Chern-Simons term

Z
C(l )W (2n+1) (53)

but because of coordinate invariance it cannot depend on the l i, i.e. C(l ) =
constant. Moreover, it has to have an imaginary coefficient due to CPT symme-
try. Hence, the real part of F2n+1(l i) is an unambiguous physical observable and is
calculable in any choice of regularization scheme that preserves coordinate invari-
ance.9

A comment about F2n+1: It measures the finite entanglement entropy across a
S2n�1 in R2n,1 [29]. The entanglement entropy provides another way to see that the
finite part in even dimensions is ambiguous while in odd dimensions it is physi-
cal. Indeed, it is straightforward to write finite local counterterms on the entangling
surface of even-dimensional spheres, while in odd dimensions this is impossible.
For example, in d = 3, the entangling surface is a circle, and the finite countertermR

S1 |k|dl is forbidden because the absolute value renders it nonlocal, while without
the absolute value symbol it is not consistent with the vacuum being a pure state.

We can show that F2n+1(li) is constant on the conformal manifold S . Start at an
arbitrary point on the conformal manifold and expand to second order

9 The imaginary part is more subtle. Only its fractional part is well defined. See, for example, the
discussions in [24][25]. We will not comment any further on the imaginary part of F2n+1.
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Z[l ]' Z(0)


1+
l i

pd/2

Z
ddx

p
ghOii+

l il j

2pd

Z
ddx

p
g
Z

ddy
p

g
⌦
Oi(x)O j(y)

↵�

Conformal Ward identities on the sphere imply that hOii = 0. Since this is true at
every point on the conformal manifold, we conclude that the continuum conformal
field theory sphere partition function is independent of exactly marginal parameters.
This argument cannot be repeated in even dimensions because there are various
finite counterterms. Indeed, we will see below that the sphere partition function
may depend on exactly marginal parameters.

Now comes the most crucial observation for the application that we present be-
low. We have argued that the finite part of the S2n partition function is scheme
dependent because one may add the counter-term (52). However, in some special
circumstances, e.g. if the theory has a bigger symmetry group, we may not want to
allow arbitrary renormalization group transformations but only those that preserve
some symmetry.

It turns out that in d = 4 N = 2 theories, which we discuss below, this counter-
term (52) is forbidden10 and thus the finite part of the partition function becomes
truly physical and meaningful.

6 An Application for d = 4 N = 2 Theories

In the recent years the exact computation of some supersymmetric observables in
N = 2 theories on S4 became possible due to the technique of supersymmetric
localization in which the path integral is reduced to a finite dimensional integral.
In particular, sphere partition functions for Lagrangian N = 2 theories (not neces-
sarily conformal) can be computed exactly, including all perturbative and instanton
contributions [15]. In this section we will show that the sphere partition function for
N = 2 SCFTs computes the Kähler potential (47) on the superconformal manifold.
This was proved in [7, 8, 10]. Here, we will follow [10], in which this statement was
derived from the anomaly (49).

According to equation (49), the sphere partition function, when regulated in a
supersymmetry preserving fashion, contains the contribution:11

logZS4 �
1

96p2 K(l , l̄ )
Z

S4
d4x

p
g
✓

1
8

E4 �
1
12

⇤R
◆
=

1
12

K(l , l̄ ) . (54)

An additional contribution comes from the usual a-anomaly. Together, the two con-
tributions give

ZS4 =

✓
r
r0

◆�4a

eK(l ,l̄ )/12 , (55)

10 Unless it is purely holomorphic
11 We dropped the Weyl tensor since it vanishes on the conformally flat sphere.



28 Zohar Komargodski

where r is the radius of the sphere and r0 a scheme dependent scale. Thus, the
sphere partition function computes the Kähler potential on the superconformal man-
ifold. This is reminiscent of a known result in two-dimensional theories. For d = 2,
N = (2,2) SCFTs the Zamolodchikov metric is Kähler and the sphere partition
function, which has been computed using localization in [3, 6], computes the Kähler
potential on the superconformal manifold [9, 12].

Note that the Kähler potential is defined up to a holomorphic ambiguity,

K(l , l̄ )! K(l , l̄ )+F(l )+ F̄(l̄ ) . (56)

This ambiguity in logZS4 is due to the existence of a supersymmetric counterterm
that depends on an arbitrary holomorphic function of l I . This counterterm can be
constructed from the supergravity invariant

Z
d4xd4q E F(L)

�
X �W abWab

�
+ c.c. (57)

Here E is a chiral density superfield. The chiral superfields X and Wab can be found
in [13]. In the sphere geometry background, and with the substitution L I(x,q) = l I ,
this evaluates to F(l )+ F̄(l̄ ) (up to a numerical coefficient). This counterterm was
first constructed from N = 2 supergravity in [8].

As mentioned above, (54) cannot be removed by an N = 2 supersymmetric
counterterm and therefore the sphere partition function has a universal meaning in
N = 2 SCFTs. If we only assume that the regularization scheme preserves N = 1
supersymmetry we would have a counterterm that depends on a general function of
l and l̄ .12 Thus, N = 1 supersymmetry of the regulator is not enough to give a
universal meaning to ZS4 . For the same reason the l -dependence of the sphere par-
tition function of N = 1 SCFTs or of non-supersymmetric CFTs is regularization
scheme dependent. The only universal contribution to the sphere partition function
of a non-supersymmetric CFT is the contribution due to the conformal anomaly a,
which is independent of the exactly marginal couplings.

As an example for the computation of the Zamolodchikov metric using equation
(55), consider an SU(2) gauge theory with 4 hypermultiplets in the fundamental
representation. This theory is superconformal, with one exactly marginal parameter
t = q

2p + 4pi
g2 , where g is the Yang-Mills coupling and q is the theta angle. The

sphere partition function can be computed using localization, and one finds:

ZS4(t, t̄) =
Z •

�•
dae�4p Imt a2

(2a)2 H(2ia)H(�2ia)
[H(ia)H(�ia)]4

|Zinst(a,t)|2 , (58)

where H(x) is given in terms of the Barnes G-function by H(x) = G(1+x)G(1�x),
and Zinst is Nekrasov’s instanton partition function on the Omega background [14].
By expanding the integrand in powers of g2 we can compute ZS4 to any order in
perturbation theory. We can also include instanton corrections, up to any instan-
ton number. It is then straightforward to compute the Zamolodchikov metric via

12 See section 4 of [7].
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gtt̄ = ∂t ∂t̄ logZS4 .13 The perturbative result for the metric is:

gtt̄ =
3
8

1
(Imt)2 � 135z (3)

32p2
1

(Imt)4 +
1575z (5)

64p3
1

(Imt)5 +O

✓
1

(Imt)6

◆
. (59)

The first two terms in this result were checked against an explicit, two-loop, Feyn-
man diagrams computation in [2]. The one-instanton correction for the perturbative
result is given by

g1-inst
tt̄ = cosq e

� 8p2
g2

✓
3
8

1
(Imt)2 +

3
16p

1
(Imt)3 � 135z (3)

32p2
1

(Imt)4 +O

✓
1

(Imt)5

◆◆
.

(60)

13 Here we dropped the factor of 12.





Chapter 5
Another Look at Monotonicity Theorems

Imagine any renormalizable QFT (in any number of dimensions) and set all the mass
parameters to zero. The extended symmetry includes the full conformal group. If
the number of space-time dimensions is even then the conformal group has trace
anomalies. If the number of space-time dimensions is of the form 4k+2, there may
also be gravitational anomalies. We will keep ignoring gravitational anomalies here.

Upon introducing the mass terms, one violates conformal symmetry explicitly.
Thus, in general, the conformal symmetry is violated both by trace anomalies and
by an operatorial violation of the equation T µ

µ = 0 in flat space-time. The latter vi-
olation can always be removed by letting the coupling constants transform. Indeed,
replace every mass scale M (either in the Lagrangian or associated to some cutoff)
by Me�t(x), where t(x) is some background field (i.e. a function of space-time).
Then the conformal symmetry of the Lagrangian is restored if we accompany the
ordinary conformal transformation of the fields by a transformation of t . To linear
order, t(x) always appears in the Lagrangian as ⇠

R
ddx tT µ

µ . Setting t = 0 one is
back to the original theory, but we can also let t be some general function of space-
time. The variation of the path integral under such a conformal transformation that
also acts on t(x) is thus fixed by the anomaly of the conformal theory in the ultravi-
olet. This idea allows us to study some questions about general RG flows using the
constraints of conformal symmetry. We will sometimes refer to t as the dilaton.

Consider integrating out all the high energy modes and flow to the deep infrared.
Since we do not integrate out the massless particles, the dependence on t is regular
and local. As we have explained, the dependence on t is tightly constrained by
the conformal symmetry. Since in even dimensions the conformal group has trace
anomalies, these must be reproduced by the low energy theory. The conformal field
theory at long distances, CFTIR, contributes to the trace anomalies, but to match
to the defining UV theory, the t functional has to compensate precisely for the
difference between the anomalies of the conformal field theory at short distances,
CFTUV , and the conformal field theory at long distances, CFTIR.

Let us see how these ideas are borne out in two-dimensional renormalization
group flows. Let us study the constraints imposed by conformal symmetry on action
functionals of t (which is a background field). An easy way to analyze these con-

31
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straints is to introduce a fiducial metric gµn into the system. Weyl transformations
act on the dilaton and metric according to t ! t +s , gµn ! e2s gµn . If the La-
grangian for the dilaton and metric is Weyl invariant, upon setting the metric to be
flat, one finds a conformal invariant theory for the dilaton. Hence, the task is to clas-
sify local diff⇥ Weyl invariant Lagrangians for the dilaton and metric background
fields.

It is convenient to define ĝµn = e�2t gµn , which is Weyl invariant. At the level of
two derivatives, there is only one diff⇥Weyl invariant term:

R p
ĝR̂. However, this

is a topological term, and so it is insensitive to local changes of t(x). Therefore,
if one starts from a diff⇥Weyl invariant theory, upon setting gµn = hµn , the termR

d2x(∂t)2 is absent because there is no appropriate local term that could generate
it.

The key is to recall that unitary two-dimensional theories have a trace anomaly

T µ
µ =� c

24p
R . (61)

One must therefore allow the Lagrangian to break Weyl invariance, such that the
Weyl variation of the action is consistent with (61). The action functional which
reproduces the two-dimensional trace anomaly is

SWZ [t,gµn ] =
c

24p

Z p
g
�
tR+(∂t)2� . (62)

Exercise 9: Check that this satisfies the Wess-Zumino condition.
We see that even though the anomaly itself disappears in flat space (61), there is a

two-derivative term for t that survives even after the metric is taken to be flat. This is
of course the familiar Wess-Zumino term for the two-dimensional conformal group.
(It also appears as the Liouville or linear dilaton action in the context of conformal
field theory.)

Consider now some general two-dimensional RG flow from a CFT in the UV
(with central charge cUV and a CFT in the IR (with central change cIR). Replace
every mass scale according to M ! Me�t(x). We also couple the theory to some
background metric. Performing a simultaneous Weyl transformation of the dynam-
ical fields and the background field t(x), the theory is non-invariant only because
of the anomaly ds S = cUV

24
R

d2xpgsR. Since this is a property of the full quantum
theory, it must be reproduced at all scales. An immediate consequence of this idea
is that also in the deep infrared the effective action should reproduce the transfor-
mation ds S = cUV

24
R

d2xpgsR. At long distances, one obtains a contribution cIR to
the anomaly from CFTIR, hence, the rest of the anomaly must come from an explicit
Wess-Zumino functional (62) with coefficient cUV � cIR. In particular, setting the
background metric to be flat, we conclude that the low energy theory must contain
a term

cUV � cIR

24p

Z
d2x(∂t)2 . (63)

Note that the coefficient of this term is universally proportional to the difference
between the anomalies and it does not depend on the details of the flow. Higher-
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derivative terms for the dilaton can be generated from local diff⇥Weyl invariant
terms, and there is no a priori reason for them to be universal (that is, they may
depend on the details of the flow, and not just on the conformal field theories at
short and long distances).

Zamolodchikov’s theorem that we reviewed in the first chapter follows directly
from (63). Indeed, from reflection positivity we must have that the coefficient of the
term (63) is positive, and thus, the inequality is established.

We can be more explicit. The coupling of t to matter must take the form tT µ
µ +

· · · , where the corrections have more ts. To extract the two-point function of t with
two derivatives we must use the insertion tT µ

µ twice. (Terms containing t2 can be
lowered once, but they do not contribute to the two-derivative term in the effective
action of t .) As a consequence, we find that

⌦
e
R

tT µ
µ d2x↵= · · ·+ 1

2

Z Z
t(x)t(y)hT µ

µ (x)T µ
µ (y)id2xd2y+ · · ·

= · · ·+ 1
4

Z
t(x)∂r ∂s t(x)

✓Z
(y� x)r(y� x)s hT µ

µ (x)T µ
µ (y)id2y

◆
d2x+ · · · .

(64)

In the final line of the equation above, we have concentrated entirely on the two-
derivative term. It follows from translation invariance that the y integral is x-
independent

Z
(y� x)r(y� x)s hT µ

µ (x)T µ
µ (y)id2y =

1
2

hrs
Z

y2hT µ
µ (0)T µ

µ (y)id2y . (65)

To summarize, one finds the following contribution to the dilaton effective action at
two derivatives

1
8

Z
d2xt⇤t

Z
d2yy2hT (y)T (0)i . (66)

According to (63), the expected coefficient of t⇤t is (cUV � cIR)/24p , and so by
comparing we obtain

Dc = 3p
Z

d2yy2hT (y)T (0)i . (67)

As we have already mentioned, Dc > 0 follows from reflection positivity (which is a
property of unitary theories). Equation (67) precisely agrees with the classic results
about two-dimensional flows (32).

7 A New Variation on the k-Theorem

Consider A CFT as above and couple the currents to background gauge fields as
Z

d2x( j+A�+ j�A+) .
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Then the generating functional is naively invariant under both transformations

A ! A+dv ,

A ! A+⇤dw .

The theory is naively invariant under both of these transformations because the
current and its Poincaré dual are both conserved. To avoid complications we take
kL = kR. Then we can preserve the vector current and only violate the axial current
by an anomaly (27). So we assume that we regularize the theory in a V-preserving
fashion and thus the partition functional satisfies

dv logZ = 0 , dw logZ = k
Z

d2x weµn FVector
µn . (68)

Actually, the Wess-Zumino consistency conditions are not trivial because dw eµn Fµn =
⇤w . The commutator of two axial transformations therefore gives

[dw1 ,dw2 ] logZ =
Z

d2xw1⇤w2 �1 $ 2 .

This vanishes by integration by parts.
Imagine now an RG flows that preserves jV . In the deep infrared, and in the deep

UV, jA becomes conserved as well. But it is not conserved throughout the flow.
To re-instate the axial symmetry throughout the flow, we introduce an axion field

p that transforms under Axial transformations but is invariant under Vector trans-
formations

A : p ! p +w , V : p ! p .

As in the proof of the c-theorem above, we now need to look for a local functional
that satisfies

dw Slocal [A,p] =
Z

d2x weµn FVector
µn , dvSlocal [A,p] = 0 .

Such a local functional is given by

Slocal =
Z

d2x
�
p ?FV +p⇤p

�
.

In particular, we see that we need to add a Wess-Zumino-Witten term for the axion.
(For supersymmetric theories this would not be surprising since both p and the

dilaton sit in the conformal compensator of supergravity so a kinetic term for the
dilaton set by the c-anomaly is a SUSY friend of a kinetic term for the axion set by
the k-anomaly.)

In any case, since p has to have a positive definite kinetic term and since the
coefficient of Slocal is multiplied by kUV � kIR for anomaly matching to work, we
obtain the k-theorem. In more detail, the coupling in the action of p looks likeR

d2xp∂ · jA + ... and therefore to second order in pi the generating functional is
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Z

d2kp(k)p(�k)h∂ · jA(k)∂ · jA(�k)i

and we are interested in the expnansion of h∂ · jA(k)∂ · jA(�k)i to second order in

k, i.e. ∂ 2

∂k2 h∂ · jA(k)∂ · jA(�k)i
����
k=0

. This is given just by

kUV � kIR =
Z

d2xx2h∂ · jA(x)∂ · jA(0)i> 0 .

So in the end one obtains a result that coincides with the more direct derivation
through two-point functions.

The very significant advantage of this method is that it is also applicable to 2d
defects, while the more straightforward method is not (at least not with the current
understanding of defects)!

8 The Monotonicity Theorem in Four Dimensions

One starts by classifying local diff⇥Weyl invariant functionals of t and a back-
ground metric gµn . Again, we demand invariance under gµn �! e2s gµn , t �!
t +s . We will often denote ĝ = e�2t gµn . The combination ĝ transforms as a metric
under diffeomorphisms and is Weyl invariant.

The most general theory up to (and including) two derivatives is:

f 2
Z

d4x
p

�det ĝ
✓

L +
1
6

R̂
◆

, (69)

where we have defined R̂ = ĝµn Rµn [ĝ]. Since we are ultimately interested in the
flat-space theory, let us evaluate the kinetic term with gµn = hµn . Using integration
by parts we get

S = f 2
Z

d4xe�2t(∂t)2 . (70)

One can use the field redefinition Y = 1� e�t to rewrite this as

S = f 2
Z

d4xY⇤Y . (71)

One can also study terms in the effective action with more derivatives. With four
derivatives, one has three independent (dimensionless) coefficients

Z
d4x
p
�ĝ
⇣

k1R̂2 +k2R̂2
µn +k3R̂2

µnrs

⌘
. (72)

It is implicit that indices are raised and lowered with ĝ. Recall the expressions for
the Euler density

p
�gE4 and the Weyl tensor squared E4 = R2

µnrs � 4R2
µn +R2

,W 2
µnrs = R2

µnrs � 2R2
µn + 1

3 R2 We can thus choose instead of the basis of local
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terms (72) a different parameterization
Z

d4x
p
�ĝ
⇣

k 0
1R̂2 +k 0

2Ê4 +k 0
3Ŵ 2

µnrs

⌘
. (73)

We immediately see that the k 0
2 term is a total derivative. If we set gµn = hµn , then

ĝµn = e�2t hµn is conformal to the flat metric and hence also the k 0
3 term does not

play any role as far as the dilaton interactions in flat space are concerned. Conse-
quently, terms in the flat space limit arise solely from R̂2. A straightforward calcu-
lation yields
Z

d4x
p

�ĝR̂2
����
gµn=hµn

= 36
Z

d4x
�
⇤ t � (∂t)2�2 ⇠

Z
d4x

1
(1�Y)2 (⇤Y)2 .

(74)
So far we have only discussed diff⇥Weyl invariant terms in four-dimensions, but

from the two-dimensional re-derivation of the c-theorem we have shown above, we
anticipate that the anomalous functional will play a key role.

The most general anomalous variation one needs to consider takes the form
ds Sanomaly =

R
d4x

p
�gs

⇣
cW 2

µnrs �aE4

⌘
. The question is then how to write a

functional Sanomaly that reproduces this anomaly. (Note that Sanomaly is only defined
modulo diff⇥Weyl invariant terms.) Without the field t one must resort to non-local
expressions, but in the presence of the dilaton one has a local action.

It is a little tedious to compute this local action, but the procedure is straight-
forward in principle. We first replace s on the right-hand side of the anomalous
variation with t

Sanomaly =
Z

d4x
p
�gt

⇣
cW 2

µnrs �aE4

⌘
+ · · · . (75)

While the variation of this includes the sought-after terms, as the · · · indicate, this
cannot be the whole answer because the object in parenthesis is not Weyl invariant.
Hence, we need to keep fixing this expression with more factors of t until the proce-
dure terminates. Note that

p
�gW 2

µnrs , being the square of the Weyl tensor, is Weyl
invariant, and hence we do not need to add any fixes proportional to the c-anomaly
This makes the c-anomaly “Abelian” in some sense.

The “non-Abelian” structure coming from the Weyl variation of E4 is the key to
our construction. The a-anomaly is therefore quite distinct algebraically from the
c-anomaly.

The final expression for Sanomaly is (see [49], where the anomaly functional was
presented in a form identical to what we use in this note)

Sanomaly =�a
Z

d4x
p
�g
✓

tE4 +4
�
Rµn � 1

2
gµn R

�
∂µ t∂n t �4(∂t)2⇤t +2(∂t)4

◆

+ c
Z

d4x
p
�gtW 2

µnrs .

(76)
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Exercise 10 (lengthy): reproduce this result.
Note that even when the metric is flat, self-interactions of the dilaton survive.

This is analogous to what happens with the Wess-Zumino term in pion physics when
the background gauge fields are set to zero and this is also what we saw in two
dimensions.

Setting the background metric to be flat we thus find that the non-anomalous
terms in the dilaton generating functional are

Z
d4x
⇣

a1e�4t +a2(∂e�t)2 +a3
�
⇤t � (∂t)2�2

⌘
, (77)

where ai are some real coefficients.
The a-anomaly has a Wess-Zumino term, leading to the additional contribution

SWZ = 2(aUV �aIR)
Z

d4x
�
2(∂t)2⇤t � (∂t)4� . (78)

The coefficient is universal because the total anomaly has to match (as we have
explained in detail in two dimensions).

We see that if one knew the four-derivative terms for the dilaton, one could extract
aUV �aIR. A clean way of separating this anomaly term from the rest is achieved by
rewriting it with the variable Y = 1� e�t . Then the terms in (77) become

Z
d4x
✓

a1Y 4 +a2(∂Y)2 +
a3

(1�Y)2 (⇤Y)2
◆

, (79)

while the WZ term (78) is

SWZ = 2(aUV �aIR)
Z

d4x
✓

2(∂Y)2⇤Y
(1�Y)3 +

(∂Y)4

(1�Y)4

◆
. (80)

We see that if we consider background fields Y which are null (⇤Y = 0), a3
disappears and only the last term in (80) remains. Therefore, by computing the par-
tition function of the QFT in the presence of four null insertions of Y one can extract
directly aUV �aIR.

Indeed, consider all the diagrams with four insertions of a background Y with
momenta ki, such that Âi ki = 0 and k2

i = 0. Expanding this amplitude, A , to fourth
order in the momenta ki, one finds that the momentum dependence takes the form
s2 + t2 +u2 with s = 2k1 · k2, t = 2k1 · k3, u = 2k1 · k4. Our effective action analysis
shows that the coefficient of s2 + t2 +u2 is directly proportional to aUV �aIR.

In fact, one can even specialize to the so-called forward kinematics, choosing
k1 =�k3 and k2 =�k4. Then the amplitude is only a function of s = 2k1 ·k2. aUV �
aIR can be extracted from the s2 term in the expansion of the amplitude around s= 0.
Continuing s to the complex plane, there is a branch cut for positive s (corresponding
to physical states in the s-channel) and negative s (corresponding to physical states
in the u-channel). There is a crossing symmetry s $ �s so these branch cuts are
identical.
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To calculate the imaginary part associated to the branch cut we utilize the optical
theorem. The imaginary part is manifestly positive definite. Using Cauchy’s theorem
we can relate the low energy coefficient of s2, aUV � aIR, to an integral over the
branch cut. Fixing all the coefficients one finds

aUV �aIR =
1

4p

Z

s>0

ImA (s)
s3 . (81)

As explained, the imaginary part ImA (s) can be evaluated by means of the opti-
cal theorem, and it is manifestly positive. Since the integral converges by power
counting (and thus no subtractions are needed), we conclude

aUV > aIR . (82)

Note the difference between the ways positivity is established in two and four di-
mensions. In two dimensions, one invokes reflection positivity of a two-point func-
tion (reflection positivity is best understood in Euclidean space). In four dimensions,
the Wess-Zumino term involves four dilatons, so the natural positivity constraint
comes from the forward kinematics (and hence, it is inherently Minkowskian).

Let us say a few words about the physical relevance of aUV > aIR. Such an in-
equality constrains severely the dynamics of quantum field theory, and the allowed
renormalization group flows. In favorable cases can be used to establish that some
symmetries must be broken or that some symmetries must be unbroken. In a similar
fashion, if a system naively admits several possible dynamical scenarios one can
use aUV > aIR as an additional handle.

The work of [35] shows that a can be also obtained from the entanglement en-
tropy across an S2, i.e. A = D3 in our previous notation. But so far it has not been
shown that (82) can be derived by manipulating the entanglement entropy and the
inequalities it obeys.



Chapter 6
Three Dimensions

Three-dimensional QFT is directly relevant for understanding interesting classical
second order phase transitions (boiling water, He3 etc), as well as quantum critical
points that appear condensed matter physics. Finally, it is a useful playground for
confinement and other non-perturbative aspects of quantum field theory.

Here we will discuss the symmetries of fixed points, S3 partition functions, mono-
tonicity of RG flows, connection to entanglement entropy, and supersymmetry.

9 Conformal Invariance

There are interesting examples of continuum theories with infinite correlation length
but no conformal symmetry. Consider the free gauge field in three dimensions

S =
1

2e2

Z
d3xF2

µn

One would think that the theory is scale invariant because we can assign the gauge
field dimension 1/2 and thus e would be dimensionless.

However, the only conceivable, conserved, gauge invariant, energy-momentum
tensor we could write is

Tµn = Fµr Fr
n �

1
4

hµn F2 . (83)

Exercise 10: Show that this energy-momentum tensor is conserved.

It is not traceless in three-dimensions T µ
µ = 1

4 F2. It is possible to prove that a
local scale current has to be of the form

Dµ = xn Tµn �Vµ , (84)

39
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where Vµ is called the virial current. This is conserved if an only if T µ
µ = ∂ nVn , i.e.

the energy-momentum tensor is a gradient of a well-defined operator. In our case,
the best we can do is to write a non-gauge invariant scale current

Dµ = xn Tµn �
1
2

Fµn An (85)

which is conserved.
It is not a good scale current because it is not gauge invariant. However, the

charge
D =

Z
d2xD0 (86)

is gauge invariant if we assume all the fields decay sufficiently rapidly.

Exercise 11: Show that the scale current (85) is conserved and show that the
associated charge is gauge invariant.

So we conclude that the theory has no scale current, but a scale charge exists. One
can also show that the currents of special conformal transformations don’t exist, but
in this case, also the associated charges does not exist. So free 3d QED is an example
of a theory that is unitary, scale invariant, but not conformal.

It is not really known whether this theory is an exception or there are more the-
ories of this sort (it would be very interesting to find a unitary interacting example
– it is fair to say that most people believe such theories do not exist). This free
counterexample to the idea that scale invariance+unitarity imply conformal invari-
ance has been discussed in many places, see for example [22],[26] and references
therein.

10 A More Careful Look into Free 3d QED (for advanced
students)

The discussion above is essentially correct, but there is a more precise way to phrase
it. In three dimensions a free gauge field and a free scalar field are completely equiv-
alent

∂µ f = eµnr Fnr . (87)

The Bianchi identity corresponds to the Klein-Gordon equation.
One has to distinguish the case that the gauge symmetry acting on Aµ is compact

from the non-compact case. In the former, one can have a nontrivial flux of the
magnetic field through two-cycles. That means that f is a periodic scalar, so that it
can wind through the dual one-cycle. If we decompactify the gauge symmetry, the
period of the scalar goes to zero. So the scalar dual to a gauge field with noncompact
gauge symmetry is of zero radius (this is a scalar without a zero mode).

The clash between having a conserved energy momentum tensor and conformal
invariance is clearly visible in the language of f . A traceless energy-momentum
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tensor for f would take the form

Tµn = ∂µ f∂n f � 1
2

hµn(∂f)2 +
1
8
(hµn ∂ 2 �∂µ ∂n)f 2 (88)

Exercise 12: Show that this is conserved and traceless.

However, this energy-momentum tensor is inconsistent with the periodicity of
f . One can naturally interpret the period of f as some dimensionful parameter (of
dimension 1/2). In the far UV, the periodicity goes to zero (since it has mass dimen-
sion) and therefore one finds that the UV theory is a scalar without a zero mode. This
is a unitary scale but non-conformally invariant theory. In the infrared the scalar ef-
fectively de-compactifies. Then, the energy momentum tensor (88) becomes admis-
sible. Hence, the infrared theory is just an ordinary, conformal, non-compact free
scalar field.

One can therefore summarize the free 3d gauge field model in the following
diagram:

A zero radius scalar field: 

Unitary, scale invariant, non−conformal

A non−compact scalar field:

Unitary, conformal

3d QED:

One can test this interpretation of the 3d QED model by, for example, computing
the entanglement entropy on a disk. One indeed finds that this approaches infinity
logarithmically in the UV (we will discuss why this has to be the case below) and a
finite value, identical to that of a free non-compact scalar field, in the infrared [27].

11 S3 Partition Functions

An interesting question is whether there exists a function in three dimensions sat-
isfying something similar to (31). The problem consists of identifying a candidate
quantity that could satisfy such an inequality and then proving that it indeed does
so.
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There are various ways to define quantities in higher-dimensional field theories
that share some common features with c. For example, in conformal theories in two
dimensions c is equivalent to the free energy density of the system, divided by the
appropriate power of the temperature. One could define a similar object in higher-
dimensional field theories. However, one quickly finds that it is not monotonic [31].
This already shows that inequalities such as (31) are quite delicate, and they fail if
one chooses to measure the number of effective degrees of freedom in the wrong
way (albeit a very intuitive and seemingly natural way).

Progress on the problem of identifying a candidate quantity generalizing (31)
happened quite recently [32],[33]. The conjecture arose independently from studies
in AdS/CFT and from studies of N = 2 supersymmetric 3d theories.

Any conformal field theory on R3 can be canonically mapped to a theory on
the curved space S3. This is because S3 is stereographically equivalent to flat space
(thus the metric on S3 is conformal to R3). In three dimensions there are no trace
anomalies, and hence the partition function over S3 has no logarithms of the radius.
(This should be contrasted with the situation in two dimensions, (23).)

Consider
ZS3 =

Z
[dF ]e�

R
S3 L (F) . (89)

This is generally divergent and takes the form (for a three-sphere of radius a)

logZS3 = c1(La)3 + c2(La)+F . (90)

Terms with inverse powers of L are dropped since they are not part of the continuum
theory. They can be tuned away by adding the cosmological constant counter-term
and the Einstein-Hilbert counter-term. However, no counter term can remove the
finite part F .14

Imagine a three-dimensional flow from some CFTuv to some CFTir. Then we can
(in principle) compute Fuv and Fir via the procedure above. The conjecture is

Fuv > Fir . (91)

Let us outline the computation of F is simple examples. Take a free massless
scalar L = 1

2 (∂F)2. To put it in a curved background while preserving conformal
invariance (more precisely, Weyl invariance) we write in d dimensions

S =
1
2

Z
d3x

p
g
✓
(—F)2 +

d �2
4(d �1)

R[g]F2
◆

. (92)

This coupling to the Ricci scalar is necessary to preserve Weyl invariance. Weyl
invariance means that the action is invariant under rescaling the metric by any func-
tion. We achieve this by accompanying the action on the metric with some action on
the fields. For the action above, Weyl invariance means that the action is invariant
under

14 More precisely, one can have the gravitational Chern-Simons term, but this cannot affect the real
part of F . We disregard the imaginary part of F in our discussion.
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g ! e2s g , f ! e�
1
2 s f . (93)

We can now compute the partition function on the three-sphere by diagonalizing
the corresponding differential operator � logZS3 = 1

2 logdet
�
�—2 + 1

8 R
�
. The Ricci

scalar is related to the radius in three dimensions via R = 6
a2 . The eigenfunctions are

of course well known. The eigenvalues are

ln =
1
a2

✓
n+

3
2

◆✓
n+

1
2

◆
,

and their respective multiplicities are

mn = (n+1)2 .

The free energy on the three-sphere due to a single conformally coupled scalar is
therefore

� logZS3 =
1
2

•

Â
n=0

mn

✓
�2log(µ0a)+ log

✓
n+

3
2

◆
+ log

✓
n� 1

2

◆◆
. (94)

We have inserted an arbitrary scale µ0 to soak up the dependence on the radius of
the sphere. Since there are no anomalies in three dimensions, we expect that there
would be no dependence on µ0 eventually.

This sum clearly diverges and needs to be regulated. We choose to regulate it
using the zeta function. One finds that with this regulator Ân=0 mn = z (�2) = 0
and therefore a logarithmic dependence on the radius is absent, as anticipated. We
remain with

Fscalar =�1
2

d
ds


2z (s�2,

1
2
)+

1
2

z (s, 1
2
)

�
=

1
16

✓
2log2� 3z (3)

p2

◆
⇡ 0.0638

One can perform a similar computation for a free massless Dirac fermion field and
one finds

Ff ermion =
log2

4
+

3z (3)
8p2 ⇡ 0.219

The absolute value of the partition function of a massless Majorana fermion is just
a half of the result above. We see that the counting of degrees of freedom is quite
nontrivial.

An interesting fact is that a nonzero contribution to F arises also from topological
degrees of freedom. This has to be contrasted with the situation in two dimensions,
where c was defined through a local correlation function and hence was oblivious
to topological matter. For example, let us take Chern-Simons theory associated to
some gauge group G,

S =
k

4p

Z

M
Tr
✓

A^dA+
2
3

A^A^A
◆

, (95)
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where k is called the level. This theory has no propagating degrees of freedom.
Indeed, the equation of motion is

0 = F = dA+A^A ,

which means that the curvature of the gauge field vanishes everywhere. Such gauge
fields are called flat connections. The space of flat connection on the manifold M is
fixed completely by topological properties of the manifold.

The partition function of CS theory on the three sphere has been discussed
in [34]. In particular, for U(1) CS theory the answer is 1

2 logk while for U(N) it
is

FCS(k,N) =
N
2

log(k+N)�
N�1

Â
j=1

(N � j) log
✓

2sin
p j

k+N

◆
. (96)

We see that the contribution from a topological sector can be in fact arbitrarily large
as we take the level k to be large.

Let us now check the inequality (91) in a simple renormalization group flow.
One can start from the conformal field theory described by U(1)k CS theory cou-
pled to Nf Dirac fermions of charge 1. This is a conformal field theory because the
Lagrangian has no coupling constant that can run. (The CS coefficient is discrete
because it is topological in nature.) This conformal field theory is weakly coupled
when k >> 1. Hence, the F coefficient is

FUV ⇡ 1
2

logk+Nf

✓
log2

4
+

3z (3)
8p2

◆

Let us now deform this by a mass term. The fermions disappear, but there is a pure
CS term in the infrared with a shifted level k±Nf /2, where the sign depends on the
sign of the mass term. Hence,

FIR ⇡ 1
2

log
�
k±Nf /2

�
,

and one can convince oneself that in the regime where our analysis is valid,

Fuv > Fir (97)

holds true.
We would now like to discuss the physical interpretation of F , which is far from

obvious. The partition function over S3 does not have an obvious interpretation in
terms of a Hilbert space so it is not clear what does it count.

Consider the entanglement entropy across a disk, so in the notation of the previ-
ous section, A = D2, a two-dimensional disk.



Lectures Notes 45

A

A c

In three dimensions a logarithm is not allowed in the von-Neumann entropy of
a disk. (Roughly speaking, this is because there are no conformal anomalies.) In
general, we expect the von-Neumann entropy of a disk of radius r to take the form

Svon�Neumann = Lr+S , (98)

where L is some UV cutoff. This linear divergence can be removed by adding a
local counter-term on the boundary of the disk

R
S1 dg . However, S is physical, it

cannot be removed by adding any admissible local counterterm.

Exercise 13: (Challenging) suppose we add on the boundary of the disk the
counter-term

R
S1 dg k where k is the extrinsic curvature. This would seem to

make S ambiguous. Explain why the counter term
R

S1 dg k is disallowed.

In the paper [35] it was shown that

F = S . (99)

Therefore, one can interpret the S3 partition function as the entanglement entropy
across a disk. Additionally, one can also think of this entanglement entropy as the
thermodynamic entropy in hyperbolic space [35]. We see again that monotonicity of
the renormalization group flow (97) is again intimately related to the entanglement
entropy.

There is not yet a conventional field theoretic proof of this inequality (91), but
using the relation with the Entanglement Entropy, the inequality follows from some
inequalities satisfied by the density matrix. Various issues with this construction
are discussed in [37]. Of course, in all of these discussions one assumes that the
entanglement entropy exists in the continuum theory.

12 Back to Free QED3

Above we have computed the F associated to the theory of a free fermion and to a
free conformally-coupled boson. Here we would like to go back to the subtle theory
of a free gauge field in three dimensions and compute the F associated to it.

Let us start with some general comments. First, since the gauge field is dual to a
scalar, one would be tempted to use (92). But remember that the gauge field is dual
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to a periodic scalar, so the second term in (92) is disallowed. This is of course closely
related to the fact that the final term in the energy-momentum tensor (88) does not
respect the gauged discrete shift symmetry. We can ask under what conditions ZS3

is going to come out independent of a, the radius of S3. ZS3 would be independence
of a if there exists a local, well-defined, Vµ such that

T µ
µ = —rVr . (100)

This equation guarantees the existence of a conserved scale invariance current,

Dµ = xn Tnµ �Vµ . (101)

Since such a local scale current does not exist for the free gauge field, there might
be an interesting dependence on a. This means that we might not be able to assign a
finite F to the theory of a free gauge field.

The partition function of the free scalar field on S3 is obtained by starting from
the action

S =
1
2

Z
d3x

p
g
�
(—f)2 +aRf 2� (102)

On the sphere of radius a, R = d(d �1)/a2. a is a general real coefficient such that
if a = 1/8 it is conformally coupled. Only a = 0 is consistent with the discrete shift
symmetry.

The partition function as a function of a is F = 1
2 logdet

�
�—2 +aR

�
. To com-

pute it one again recalls that the eigenvalues of the Laplacian on the sphere of radius
a:

ln =
1
a2 n(n+2) , (103)

and they come with multiplicity mn = (n+1)2. Hence,

F =
1
2 Â

n
mn log

✓
ln +

6a
a2

◆
. (104)

Let us investigate the dependence on the a that appears inside the logarithm first.
It takes the form � log(a)Ân mn. Employing zeta-function regularization Ân n2 =
z (�2) = 0 and hence the coefficient of log(a) is zero.

We remain with

F =
1
2

•

Â
n=0

(n+1)2 log(n(n+2)+6a) (105)

This is divergent as N3 where N is some effective cutoff on the modes. This corre-
sponds to a cosmological constant counter-term on S3. There is also a subleading
linear divergence corresponding to an Einstein-Hilbert counter-term. So the above
sum needs a regulator.

We see a certain sickness for a corresponding to the periodic free scalar, a = 0.
This is easily interpreted as coming from the fact we have a non-compact scalar
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zero mode once we remove the curvature coupling. So this is a divergence from the
infinite volume of target space. It is an infrared divergence.

We can compute the sum (105) with a zeta-function regulator. A helpful formula
that we will use is

•

Â
n=0

(n+1)2 log(n+c)=� d
ds
⇥
z (s�2,c)+2(1� c)z (s�1,c)+(c�1)2z (s,c)

⇤����
s=0

.

(106)
Now let us consider a = 0, where the existence of a divergence due to the non-

compact target space has already been noted. We take a = 1
6 e to regulate things. We

find
F [a =

1
6

e] = 1
2

log(e)+ log(p)
2

+
z (3)
4p2 +O(e) . (107)

Exercise 14: Derive (106) and (107).

The coefficient 1
2 in front of the first log would be generally replaced by the

dimension of moduli space of the theory divided by two. Note that this partition
function is now tending to minus infinity. When e is small, the scalar is effectively
allowed to probe distances or order f ⇠ e�1/2R�1/2. Therefore, if we have a scalar
with period sqrt f (where f has dimension 1), we expect that the leading logarithmic
piece in the F function would be

F =
1
2

log( f�1R�1) =�1
2

log( f R) (108)

We see that when the scalar has zero radius F ! • which is completely consistent
with the qualitative picture of the flow in the figure on page 12.

Since the periodic scalar and the gauge field are equivalent, we see that the free
gauge field needs to be assigned infinite positive F (we again quote only the leading
logarithmic term):

FMaxwell
S3 =� log(e2a)

2
. (109)

This allows us an interesting reinterpretation of the result 1
2 logk of the U(1)k CS

theory, quoted above (96). If we add a CS term of level k to a free Maxwell field, it
picks up a mass m ⇠ e2k and hence the logarithm needs to be “cut-off” at spheres of
radius a�1 ⇠ e2k. Therefore we expect to find in the infrared 1

2 logk with a positive
sign in front of the logarithm. This is precisely the result in CS theory, including the
pre-factor.

We summarize that the “number of degrees of freedom” associated to a free
gauge field is formally infinite. In fact, this is necessary for the F-theorem to hold:
we can start from the free gauge field and flow to the topological CS term with
any level k. Since the latter has F = 1

2 log(k), the only consistent F that we must
assign to the free gauge field is infinite. This is somewhat unfortunate, because many
interesting models whose dynamics we would like to understand (e.g. QED+flavors
in 3d) start their life in the ultraviolet from free gauge fields and so the F-theorem
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does not easily lead to interesting bounds. However, one can still place interesting
bounds by applying tricks such as in [41].

Note a conceptual difference from the c-theorem in two dimensions (31). In the
two-dimensional case, topological degrees of freedom do not contribute. In three
dimensions, one must count the topological degrees of freedom as well.

13 The S3 Partition Function can be Computed in N = 2
Theories

If one wants to gain some information about F beyond free (or weakly coupled)
models, non-perturbative methods are needed.

It turns out that if one starts from N = 2 (i.e. four supercharges) QFT in flat
space (R3), then one can put the theory on S3 while preserving four supercharges,
which are not the same ones that are preserved in flat space. A technical requirement
is that the flat space theory has at least one R-symmetry.

This statement is obvious for superconformal field theories in flat space, since
they can be placed on S3 using a stereographic transformation as above. The sur-
prising fact is that this can be done even if the theory is non-conformal.

One can then use supersymmetric localization to compute F in many interesting
examples. In particular, the inequality (91) is always satisfied. To learn about these
developments see [38],[39],[40] and references therein.



Chapter 7
Scale vs Conformal Invariance

As we review in the section about two-dimensional theories, the problem in two
dimensions was essentially solved long ago. In three dimensions the problem is
open. In four dimensions, there has been a lot of recent work on the subject. The
problem is almost solved. Let us briefly explain what we mean by “almost.” The
tools used to arrive at the results below are very similar to what we have discussed
in the previous two sections.

Suppose one is given a unitary scale invariant theory that is not conformal. That
means that there exists some Vµ such that T µ

µ = ∂ rVr . The theory is non-conformal
if there does not exist a scalar O such that Vµ = ∂µO . In fact, for the results below
to hold true, one does not quite need to assume the existence of Vµ – having a well-
defined scale charge D is sufficient. (So the results also hold for the two-form gauge
theory.)

In [50] it was shown that under these assumptions, for any state vector |Xi in the
scale invariant theory, we have

hVAC|T µ
µ (p)T µ

µ (q)|Xi= 0 , p2 = q2 = 0 . (110)

(The momentum of the state |Xi is �p� q.) If one could prove (111) for any p,q
then it would follow that T µ

µ = 0 and thus the theory is conformal. However, one
cannot hope to be able to prove that T µ

µ = 0 because in many four-dimensional
models one can improve the energy-momentum tensor.15 The best one can hope to
prove is that T µ

µ =⇤O .
In [26] the argument of [50] was generalized to prove the following

8n .,8|Xi. , hVAC|T µ
µ (p1)T

µ
µ (p2) . . .T

µ
µ (pn)|Xi= 0 , p2

i = 0 . (111)

It was then argued that this allows to conclude that T =⇤O . The argument is not a
proof, but it relies on some very simple and intuitive analogy with S-matrix theory.
A more precise statement of what the argument shows is that, at least as far as the

15 For example, in scalar field theory, we can add the term (∂µ ∂n � hµn ∂ 2)f 2 to the energy-
momentum tensor.
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theory is flat space is concerned, all its local properties must be consistent with
conformal invariance (if one assumes unitarity and scale invariance).

We would like to finish with a short remark on the situation in higher dimensions:
the analysis was repeated in six dimensions in [52]. Despite many encouraging facts,
a proof that the Euler anomaly is monotonic does not exist yet. In five dimensions,
the S5 partition function has a physical finite part, which one should hope is mono-
tonic in RG flows. But currently there is no argument to that effect.



Chapter 8
The Supersymmetric Index

Since the work of Witten [] it has been clear that in some situations non-perturbative
computations in supersymmetric theories can be performed at weak (or even zero)
coupling. Suppose we are given a supercharge Q with {Q,Q†}= D where D is some
conserved charge. Let the Hilbert space be H , then we may consider the following
index:

I [µi] = TrH

"
(�1)F ’

i
zqi

i

#
. (112)

From the above, it follows that only states with D = 0 contribute to I . The
next key observation is that representations of the algebra {Q,Q†} = 0 are short
compared to the case that D 6= 0. Finally, two short representations can combine
to a long representation only if they have different fermion numbers. Therefore,
the trace (112) is independent of continuous coupling constants and it can be often
computed at zero coupling.

However, the Witten index can be rarely computed in flat space. This is because
many supersymmetric theories have a moduli space of vacua thus rendering the
counting of supersymmetric vacua ill defined. Recently, it has been realized how
to proceed in such cases. We can study the theory on Md�1 ⇥R with Md�1 some
compact d � 1-dimensional manifold. Since on curved spaces one often finds that
the scalar fields are coupled to curvature, one may hope that the continuous moduli
space is lifted. If so, the index (112) can be computed [] and it is an interesting
object to study.

Not every choice of Md�1 is consistent with preserving some supersymmetry.
Let us spell out the conditions that Md�1 needs to satisfy in order for it to be con-
sistent with unbroken supersymmetry. The proofs of these claims can be found in
[]. An interesting family of spaces M3 ⇥R which admit unbroken SUSY genera-
tors which do not depend on time (i.e. do not depend on the coordinate of R) is
obtained by taking M3 to be a Seifert manifold. A Seifert manifold is simply an S1

fibration over a Riemann surface. (Some simple examples in this class are therefore
S2 ⇥ S1, S3, and Lens spaces.) Such spaces preserve at least two supersymmetry
generators dz and dz̃ of opposite R-charge. Since the supersymmetry generators are
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time-independent, there is no obstruction to compactifying R! S1 and we can thus
consider M4 = M3 ⇥S1 with M3 any Seifert manifold.

The total four-dimensional space M4 =M3⇥S1 is then guaranteed to be a com-
plex manifold, and there is a holomorphic Killing vector that points in a direction
which is a linear combination of the Seifert circle and the S1 in M3 ⇥S1. Let us call
this holomorphic Killing vector K. The SUSY algebra is then

{dz ,dz̃}= 2idK , d 2
z = d 2

z̃ = 0 . (113)

Let us quote another theorem that would be central for the applications to follow.
Since the manifold M3 ⇥S1 is complex, there is a moduli space of complex mani-
folds with this topology. This was studied by Kodaira-Spencer. One can prove that
ZM3⇥S1 , i.e. the partition function on this space, is independent of the metric that we
put on M3 ⇥S1. It only depends on the complex structure moduli.

A particularly interesting choice to make is M3 = S3. Then the moduli space
of complex manifolds which are topologically M3 = S3 is two-complex dimen-
sional. The partition function is independent of the metric. It only depends on these
two complex numbers. If we take the field theory to be superconformal, then, since
Sd�1 ⇥R is conformally flat, the index (112) in this case can be related via radial
quantization to counting local operators in Rd that sit in short representations of the
superconformal group. We will see how the geometric interpretation of the partition
function as an invariant in complex geometry and the combinatorial interpretation
as an object that counts local operators are consistent.

If we denote the generator of translations along the S1 by H, then the partition
function can be interpreted combinagorially as

Z = TrH (M3)

h
(�1)F e�b (H�Âi µiqi)

i
. (114)

The length of the S1 is b ⌘ 2pr1 ⌘ T�1. We have also allowed for various chemical
potentials µi that couple to conserved charges qi which commute with the SUSY
generators on M3 ⇥S1.

Let us recall Cardy’s universal formula [] in two dimensions

b ! 0 : Â
operators

e�bD ⇠ e
p2c
3b . (115)

where c is the Virasoro central charge and the spatial circle is again taken to have
radius one. Equation (115) is intimately related to the modular group in two dimen-
sions. It is therefore quite interesting that extremely similar formulae exist for the
supersymmetric partition functions in d = 4 (and d = 6).

Indeed, for example in d = 4, we will find

b ! 0 : Â
operators

(�1)F e�b (D+1/2R) ⇠ e�
16p2

3b (a�c)
, (116)
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where we have taken the radius of the S3 to be one, and a,c are the usual trace
anomalies in four dimensions. Only operators that sit in short representations of
the superconformal group contribute to the left hand side of (116). Therefore, (116)
encodes a universal property of the spectral density of “heavy” BPS operators in
N = 1 SCFTs in four dimensions. Conventionally, the a- and c- anomalies are
extracted from three-point functions of the energy-momentum supermultiplet. Here
we see that the difference is completely fixed by the BPS spectrum.

The physics behind (116) involves rather interesting considerations in RG flows,
hydrodynamics, and supersymmetry. So we will explain it now.

It is helpful to begin by recalling the construction of the usual thermal partition
function of QFT (not necessarily supersymmetric). We thus consider an arbitrary
QFT on the space M3 ⇥S1 with the fermions assigned anti-periodic boundary con-
ditions along the circle. This partition function captures the equilibrium properties
of the quantum field theory at finite temperature T = b�1 ⌘ (2pr1)�1. Further, let
us assume the theory has a conserved U(1) symmetry, with q being the correspond-
ing charge. It is useful to introduce a background metric gµn that couples to the
energy-momentum tensor and a background gauge field Aµ that couples to the con-
served current. In order to obtain correlation functions at zero Matsubara frequency,
one can reduce over the S1 and find a local three-dimensional functional, W , of
the background metric and gauge field. Derivatives of W with respect to the back-
ground fields generate equilibrium correlation functions of the energy-momentum
tensor and the conserved current.

The expansion in derivatives of W corresponds to the expansion in the radius of
S1 compared to the radius of M3. (If M3 = R3 then the expansion in derivatives is
just the usual expansion in the 3d momentum relative to the plasma.) In detail, we
take the metric and background gauge field to be

ds2 = e2f (dX4 +aidxi)2 +hi jdxidx j , A = A4(dX4 +aidxi)+Aidxi . (117)

The total space is topologically M3 ⇥ S1 and i = 1,2,3 runs over the coordinates
on M3. All background fields are taken to be functions of only the xi. X4 ' X4 +b
describes a circle of length b . To simplify, below we set f = 0 (it is straightforward
to reintroduce f ).

At zeroth order in derivatives we have

W (0) =
Z

d3x
p

hP(A4,b ) (118)

with an arbitrary function P. Actually, in the absence of anomalies, A4 would
be a periodic scalar A4 ' A4 +

2p
b and so the function P should only depend on

exp(ibA4). P is the usual hydrodynamic pressure.
The terms which are first order in derivatives have been classified in []. They all

have to be Chern-Simons-like terms.

W (1) =
1
r1

ik1

4p

Z

M3
A ^da+

ik2r1

4p

Z

M3
A4A ^dA +

ik3r1

4p

Z

M3
A2

4A ^da . (119)
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(In our convention for the metric, the KK photon a is dimensionless, which explains
the various factors of r1 appearing above.) Note that the coefficients k2,k3 are as-
sociated to field-dependent Chern-Simons terms. These are not standard terms in
three-dimensional QFT because they violate gauge invariance. Here we have in-
finitely many KK fields in three dimensions, so such non-gauge invariant terms may
arise in principle due to the need to regulate the sum over the infinitely many three-
dimensional quantum fields.

Insert here digression about Chern-Simons Contact Terms in Three Dimen-
sions, Quantization, etc.

The sum over the infinitely many KK fields has a preferred regularization. One
requires that the partition function W satisfies the four-dimensional anomaly equa-
tion

Aµ ! Aµ +∂µL : dL W =�i
C

24p2

Z

M3⇥S1
LF ^F , (120)

where C is the usual U(1)3 anomaly coefficient, such that C = 1 for a left-handed
fermion of unit charge. Dimensionally reducing the right hand side of (120) over the
circle, we can match with the gauge variation of (119) and find

k2 = 2k3 =�2
3

C . (121)

Note that such considerations do not fix k1 because it multiplies a term that is
invariant under small gauge transformations. So we have to focus on the term

1
r1

ik
4p

Z

M3
A^da . (122)

In examples we find

k =� 1
12

Tr(q) . (123)

This relation was conjectured to hold in general in []. We will now give a very
simple non-perturbative derivation of (123) in a large class of theories. A complete
non-perturbative proof remains elusive, see however [].

Consider the four-dimensional theory of a massless Weyl fermion ya charged
under a U(1) gauge field with charge e. We take the space to be topologically M3⇥
S1, with the curvature of M3 much smaller than the inverse radius of the S1 (i.e. the
KK scale). The fermion is assigned anti-periodic condition along the S1.

The dimensionally-reduced theory on M3 is gapped, and the spectrum of the low-
energy theory on M3 is a tower of fermions, with masses r1mn = n� er1A4, where
n 2 Z+1/2. The tower is coupled to the three-dimensional gauge field Ai and also
to the graviphoton ai. Under the latter the nth particle carries charge n 2 Z+ 1/2.
Recall the following fact about the 3d theory of a single massive fermion ya with
charges ex under the U(1) gauge fields Ax: upon integrating this fermion out, one
generates the Chern-Simons terms
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We f f =� i
8p

sgn(m)
Z

M3
ÂexeyAx ^dAy . (124)

Integrating out the nth KK fermion, we thus find (according to (124)) the following
Chern-Simons terms:

� i
8p

sgn(n� er1A4)
Z

M3

✓
e2A ^dA +2e

n
r1

A ^da+ ...

◆
. (125)

It is crucial that this is a correctly quantized, gauge invariant Chern-Simons term.
But now we need to sum over n2Z+1/2 .This sum is divergent. We will regulate

it using the zeta function. We need the following three sums:

S1(s,A4) = Â
n2Z+1/2

sgn(n� er1A4)|n� er1A4|�s ,

S2(s,A4) = Â
n2Z+1/2

sgn(n� er1A4)n|n� er1A4|�s ,

evaluated at s = 0. For large enough s all the sums above converge. We take er1A4 2
(� 1

2 ,
1
2 ) for simplicity. After some algebra we find

S1(s = 0,A4) = 2er1A4 ,

S2(s = 0,A4) = e2r2
1A2

4 +1/12 ,

We thus find the following effective action:

W f ermion =� i
4p

Z

M3

✓
e3r1A4A ^dA +

✓
e3r1A2

4 +
e

12r1

◆
A ^da+ ...

◆
.

(126)
This agrees with the general ansatz for the effective action and we see that (123)
holds true.

Additional comments:

• While the contribution from integrating out each individual field in the KK tower
leads to a properly quantized Chern-Simons term, we see that the sum over the
KK tower leads to incorrectly quantized (i.e. non-gauge invariant) Chern-Simons
terms.

• Let us imagine an arbitrary Lagrangian field theory. (By that we mean that there
exists a point in the space of continuous couplings such that the theory be-
comes free.) If the coefficient of

R
M3

1
r1

A ^ da had depended on any continu-
ous couplings, we would have arrived at a contradiction because upon promot-
ing these couplings to background fields we would have violated gauge invari-
ance under small gauge transformations. Since there is no local four-dimensional
anomaly to soak up this non-gauge invariance, any dependence on continuous
coupling constants is therefore disallowed. We can thus compute the coefficient
of
R
M3

1
r1

A ^ da at the free field theory point. Thus, the formula (123) follows
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for any value of the coupling constants. (One can view this argument as a non-
perturbative generalization of Coleman-Hill.)

Let us now add supersymmetry to this story. The gauge field A can be taken to
be the R-symmetry gauge field, A (R). Denote vi = �ie i jk∂ jak. In order to super-
symmetrize (122) we need to find a d = 3 N = 2 supergravity term that includes
A (R)

i vi. This is provided simply by the N = 2 Einstein-Hilbert term!

LEH = M
✓

1
2
R(3)�H2 +2vivi �2A (R)

i vi
◆

, (127)

where H is some auxiliary field in the supergravity multiplet. For spaces of the form
M3 ⇥S1 it can be explicitly found by solving some Killing spinor equations.

Since the coefficient of (122) is fixed, we find that the scale M is fixed as well.
Therefore, at very small b the leading contribution to the M3⇥S1 partition function
is

b ! 0 : logZM3⇥S1 =
p2kLM3

b
+O(1) , (128)

where
LM3 ⌘

1
24p2

Z

M3
dx3

p
h
✓

1
2
R(3)�H2 +2vivi �2A (R)

i vi
◆

, (129)

k =�Tr(R) . (130)

14 Applications and Examples

An interesting example to consider is the partition function over M4 = S3
b ⇥ S1,

where S3
b stands for the squashed three-sphere with parameter b. The metric is a

product metric with S1 having length b and the metric on S3
b being

ds2
S3

b
= r2

3
⇥
b�2 cos2 ydf 2 +b2 sin2 ydc2 + f (y)2dy2⇤ ,

with f (y) =
q

b2 cos2 y +b�2 sin2 y . The range of the angles is f ,c 2 [0,2p],
y 2 [0, p

2 ]. For b = 1 S3
b becomes the usual round sphere. The total space S3

b ⇥ S1

thus has the line element
ds2 = r2

1dq 2 +ds2
S3

b
,

with q ' q + 2p . The four-dimensional metric above can be viewed as a Hermi-
tian metric corresponding to a point on the moduli space of complex structures of
S3 ⇥ S1. (This moduli space is two-complex dimensional.) In order to write su-
persymmetric theories on this space one needs to activate the background field
H = � i

r3 f (y) in addition to the metric. The background field vi vanishes because
the four-dimensional metric is a direct product. We are thus ready to compute LS3

b
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LS3
b
=

r3

3
b+b�1

2
. (131)

A comment on Geometry: There is the following family of metrics on S3 ⇥ S1,
all of which correspond to the same p,q:

ds2 = r2
1dq 2 + r2

3
⇥
b�2 cos2 ydf 2 +b2 sin2 ydc2 + f (y)2dy2⇤ ,

but rather than taking f (y) to be f (y) =
q

b2 cos2 y +b�2 sin2 y as above, we
could take any f (y) which approaches b�1 at y = p/2 and b at y = 0. The back-
ground field H is given by H = � i

r3 f (y) . The background field vi vanishes. Our
claims can therefore be consistent only if the integrated local term (127) does not
depend of f (y) (except for the values of f (y) at the boundaries). Indeed, evaluating
the local term we find that

LS3
b
⇠
Z p

2

0
dy
✓

2
f (y)

sin(2y)+
∂y f (y)

f (y)2 cos(2y)

◆

=
Z p

2

0
dy ∂y

✓
� 1

f (y)
cos(2y)

◆
=

1
f (p/2)

+
1

f (0)
= b+b�1 .

This means that we have found local densities that are invariant under some sub-
set of the metric deformations of transverse holomorphic foliations. These local
densities are therefore somewhat analogous to the familiar topological invariants in
even dimensions.

For the superconfromal R-symmetry, we have

Tr(U(1)R) = 16(a� c) . (132)

We can thus rewrite the asymptotic form of the partition function as

b ! 0 : logZS3
b⇥S1 =�8p2r3(b+b�1)

3b
(a� c)+ · · · . (133)

Radial quantization allows us to reinterpret this partition sum as counting local
operators in R4 that sit in short representations of the superconformal group, as
explained above. The b ! 0 limit thus corresponds to counting all the BPS operators
with signs.

One learns

• 1.) If a� c < 0 then fermionic and bosonic operators do not cancel against each
other asymptotically, and the total Witten index in the space of local operators
therefore diverges. The (absolute value of the) spectral density is asymptotically
growing exponentially.

• 2.) If a = c then there is a delicate albeit imperfect cancelation between bosonic
and fermionic short representations. The spectral density does not grow expo-
nentially asymptotically.
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• 3.) If a�c > 0 then there is a perfect cancelation between fermionic and bosonic
short representations. The spectral density is asymptotically oscillatory and the
bigger a� c is, the more frequent the oscillations are.

Thus, the scenario that a� c > 0 might seem unlikely or non-generic from this
point of view. This could explain why it is much more difficult to construct examples
with a� c > 0, although clearly not impossible. (e.g. the free vector field of the
previous subsection).

Note that when a = c we find a vanishing coefficient for the three-dimensional
Einstein-Hilbert term in the effective action on S3. Examples of SCFTs with a =
c include the theories with N = 4 supersymmetry. This perhaps suggests that it
could be impossible to complete the Einstein-Hilbert term to an action preserving
the extended (off-shell) supersymmetry.

The connection between the sign of a� c and the asymptotic structure of short
representations is reminiscent of the Kutasov-Seiberg theorem.

15 More on the Central Charge

The central charge c appears in several other very important places. We would like to
explain very briefly why c appears in the entanglement entropy of the vacuum [20].
Suppose we take R = A [ Ac and A = [a,b] some interval. The reduced density
matrix is defined by

rA = TrAc(rvacuum) ,

with rvacuum the density matrix of the normal pure vacuum. Then, the Renyi en-
tropies are defined by

Sn =
1

n�1
TrA(rn

A) .

(The von-Neumann entropy is recovered from the n ! 1 limit, if the limit exists.)
The Sn can be calculated from the partition function of the theory on an n-sheeted
covering of R2:

Cn := [n
i=1R2

(i)

such that for any field f , it takes the same values for all R2
(i) away from A and

on A we glue fi and fi+1 in a cyclic fashion. This construction can be regarded
technically as some twist field correlation function in a symmetric orbifold theory.
Less abstractly, near the points a,b we simply have a conical singularity with the
total angle in the range q 2 [0,2pn]. The space Cn constructed above can actually
be mapped conformally to the one with A = [0,•].16 Then the Cn space associated
to it is manifestly equivalent to the ordinary complex plane after a transformation

z = w1/n , w 2Cn ,z 2 R2 .

16 Exercise 5: Show that in two dimensions any interval can be conformally mapped to the half
line.
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Now, using the fact that the holomorphic energy-momentum tensor does not trans-
form covariantly, using the explicit expressions (19),(20) we find that the conical
defects at a,b behave as primary operators of dimensions

Dn =
c

24
(1�1/n2) .

The Renyi entropy, being just the partition function on Cn, is therefore given by

Sn ⇠
1

n�1
|a�b|�c/6(n�1/n) . (134)

In particular, the n ! 1 limit exists and gives

Svon�Neuman ⇠ c log(|a�b|) . (135)

The analysis of the case that A consists of a disjoint union of intervals is far more
complicated and we will not discuss it here.

There is also a very interesting reinterpretation using the entanglement-entropy
of the interval. when the interval [a,b] is very short compared to the mass scale, then
we recover (135) with c ! cuv. When the interval becomes very long compared to
the mass scale, then we have (135) with c ! cir. In between there is some inter-
polating functions. Using information-theoretic properties of entropy, it is possible
to show directly [30] from this point of view that cuv > cir. So it would seem that
the monotonicity of the renormalization group flow in two dimensions is essentially
equivalent to some properties of the von-Neumann entropy.





Chapter 9
S-Matrix Theory

Let A be the scattering amplitude, which is assumed to be analytic other than singu-
larities corresponding to physical processes. Unitarity has a simple physical mean-
ing: the sum of probabilities of all processes which are possible at a given energy is
equal to unity, SS† = 1. If S = 1+ iA, then Representing the amplitude A as the sum
of its real and imaginary parts, A = ¬A+ i¡A, the unitarity condition takes the form

2¡A = AA† .

For 2-2 scattering we define the standard Mandelstam variables

s = (p1 + p2)
2 , t = (p1 � p3)

2 , u = (p1 � p3)
2 .

They are actually not independent

s+ t +u =
4

Â
i=1

m2
i .

At the center of mass frame, for identical particles of mass m, the scattering angle is
cosq = 1+ 2t

s�4m2 .
Here we will make some comments about an S-matrix that is saturated by stable

resonances, namely, that only tree-level diagrams are included. Such an S-matrix
cannot be by itself unitary, but it becomes exact at large N in theories like QCD.
The consequences of unitarity are much easier to analyze in this case. On the other

61
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hand, due to the intrinsic interest in large N QCD and related theories such as String
Theory, this still allows to study interesting questions.

If we imagine now scattering identical scalar particles then we have a scattering
amplitude A(s, t) which satisfies a couple of requirements:

• A(s, t) = A(t,s). This is just permutation symmetry between the particles.
• For a fixed t we have a meromorphic function in s with simple poles at {pn} with

real pn. If there are no tachyons then all the pn are non-negative.
• Unitarity: Ress=pnA(s, t) = Âk fkPk(cosq) with fk � 0 and at the residue we can

use cosq = 1+ 2t
pn�4m2 . The Pk are Legendre polynomials in four dimensions, and

in general dimension we should use 2F1

⇣
� j, j+D�3, D�2

2 , 1�cos(q)
2

⌘
. There-

fore, the residues are some polynomials in t with positive coefficients in the ap-
propriate basis of spherical harmonics.

The physical interpretation of the residue is that it tells us which intermediate
particles of mass squared pn appear. If the Legendre polynomial Pl is present in
the expansion of the residue at s = pn then a particle of spin l and mass ppn is
exchanged.

It is actually very easy to find amplitudes that obey all of these axioms. A simple
example is

A(s, t) =
1

s�m2 +
1

t �m2

which describes a single massive scalar resonance.
The theory of scattering amplitudes becomes much more interesting and much

more constrained if we demand that the amplitude decays at large s, which means
that the UV is very soft. This is what happens in String Theory and perhaps in many
other examples (why?! )

So let us throw another requirement into the pot

9t0 such that lim
s!•

A(s, t0)! 0 .

Now it appears extremely difficult to solve all the constraints. (this requirement
is like saying that the Regge function crosses zero at some point – why does it have
to? Maybe instead of this requirement we should demand Regge, which sounds a
little more physical.)

One can immediately prove that infinitely many resonances are necessary in or-
der to satisfy this constraints of decaying amplitude.

Proof: lims!• A(s, t)! 0 implies that we can deform a small contour g around
s0

A(s0, t) =
1

2pi

Z

g
A(s, t)

ds
s� s0

.

to infinity, while avoiding the poles

A(s0, t) =
1

2pi

Z

R+ie
A(s, t0)

ds
s� s0

� 1
2pi

Z

R�ie
A(s, t0)

ds
s� s0

.
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We therefore only need to know ¡A on the real axis, which is given by

¡A(s, t) = Â
n

Hn(t)d (s� pn)

with Hn(t) a non-negative finite sum of Legendre polynomials of cos(q) = 1 +
2t

pn�4m2 .
Hence, we find that

A(s, t) = Â
n

Hn(t)
s� pn

. (136)

This decomposition converges for those t that satisfy lims!• A(s, t)! 0. Typically
these are negative t’s. Indeed, for negative t the Legendre polynomials are oscillating
and the sum is better behaved.

From the representation (136) we see that the amplitude can satisfy

A(s, t) = A(t,s)

only if there are infinitely many terms in the expansion. Otherwise, the function is
only a polynomial in t without singularities.

In fact, one can prove that for every k that exists at least once, infinitely many
Hn(t) must have a nonzero component of the kth Legendre polynomial. Physically,
this means that we have infinitely many particles of every spin that exists at least
once. This already starts smelling like Regge trajectories, Hagedron densities and
many other nice things we expect from Large N gauge theories and String Theories.

Proof: We begin from the standard decomposition explained above (now per-
formed in the t-channel):

Â
i

Â
mi

C(mi, i)
t �m2

i
Pi

✓
1+

2s
m2

i �4m2

◆
.

Unitarity is the statement that C(mi, i)� 0. We assume that for s < 0 this expansion
converges. In particular we will be interested in the kinematical regime

s < 0 and t 2 (0,4m2 � s)

In this case, the scattering angles q is real (let’s discard the states with mass< 2m
for the simplicity of the argument).

We can now project A(s, t) to spin j in the s-channel. From the s-channel decom-
position of A(s, t) we get

Z 4m2�s

0

dt
4m2 � s

A(s, t)Pj

✓
1� 2t

4m2 � s

◆
=

a j(s)
2 j+1

If we only have finite many masses at spin j then a(s, j) is just a rational function
with poles at the position of these masses and positive residues. On the other hand,
if we plug into the same integral, the t-channel decomposition we get
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2
4m2 � s Â

i
Â
mi

C(mi, i)Pi

✓
1+

2s
m2

i �4m2

◆
Q j

✓
1+

2m2
i

s�4m2

◆

where we integrate slightly above the real axis and

Q j(x) = q j(x)+
1
2

Pj(x) log
x+1
x�1

Here, q j(x) is a known polynomials of degree j� 1 (it can be read from Pj by de-
manding that at large z, Q decays as 1/z j+1). The function Q j(x) is the other solution
to the partial wave differential equation that defines the Legendre polynomials.

Let m⇤ to be the first mass that contains a particle of spin j for which 4m2�m2
⇤ <

0. For 4m2� s < m2
⇤, we do not reach the logarithmic branch point of Q j(1+

2m2
⇤

s�4m2 )
yet. If we now take the limit

s ! s⇤ ⌘ 4m2 �m2
⇤

then the terms in the t-channel decomposition with mass m⇤ contribute

(�1) j log(s� s⇤)
1

m2
⇤

Â
mi=m⇤

C(mi, i)(�1)i +[regular] (137)

while the other contributions are regular at this point. The coefficient of the log in
(137) is positive by unitarity. Therefore, we conclude that for any spin j carried by
a particle there are infinite many particles of that spin.

There are not many explicit examples of amplitudes that satisfy all of these con-
straints. One well known example is the Veneziano amplitude, where our external
particles are tachyons, with mass squared �1 in some units.

Consider
A(s, t) =�G (�s�1)G (�t �1)

G (�s� t �2)

It has simple poles at s = �1,0,1,2, ... and t = �1,0,1,2, .... Let us consider the
residue at s = n where n 2 {�1,0,1,2...}.

A(s ! n, t) =
Poln+1(t)

s�n
,

where up to an overall coefficient Poln+1(t) = (�1)n+1 G (�t�1)
G (�n�t�2) is a polynomial of

degree n+1.

We can always decompose

Poln+1(t) =
l=n+1

Â
l=0

al
n+1Pl

✓
1+

2t
n+4

◆

Claim: an
l � 0 for all l,n.
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Instead of using the Legendre polynomials, one can also try their natural general-
ization to SO(D�1) polynomials. (Legendre polynomials appear for D = 4.) These
are defined by

Pj(z) = 2F1

✓
� j, j+D�3,

D�2
2

,
1� z

2

◆
.

(They can be also defined as the solution to some differential equation.) The claim
an

l � 0 remains true for all D  26. This is why 26 is the critical dimension of string
theory.

If there is a direct proof of this result, it would be invaluable. The only general
proof that exists (as far as I know) relies on physical arguments having to do with
the string worldsheet theory.

Explicit Check of n =�1,0,1
A useful representation of the Legendre polynomials that are relevant for scatter-

ing in D space-time dimensions is

✓
1

1�2hx+h2

◆D�3
2

= Â
k

hkPD
k (x)

From this we learn that

PD
0 (x) = 1 , PD

1 (x) = 2ax , PD
2 (x) = 2x2(a2 +a)�a ,

with a = D�3
2 .

On the other hand, Poln+1(t) = (t + 2)(t + 3) · · ·(t + n+ 2). In order to express
it as a function of cosq , we use the change of variables t = n+4

2 (cosq � 1). The
case of n = �1 is just Pol0(t) = 1 so it is obviously unitary. The case of n = 0 we
have Pol1(cosq) = 2cosq which is proportional to PD

1 (x) with a positive coefficient.
Finally, the case of n = 1 is

Pol2(cosq) = 25
4

cos2 q � 1
4
.

In order to decompose that in terms of PD
2 and PD

0 with only positive coefficients,
it has to be true that the ratio of the x2 and constant term in PD

2 is smaller than 25,
hence, a + 1  25/2 which means D  26, the critical dimension of string theory.
For D > 26, the spin 0 mode in the n = 1 pole does not have a positive coefficient
so it is a ghost.

The Veneziano amplitude appears to be really special. Are there any interesting
deformations of it? Do we always get linear Regge trajectories? Hagedorn densities?
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