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Introduction

• The current ΛCDM model of cosmology invokes
unobserved dark matter[1] to account for observed
gravitational phenomena that cannot be explained
by Einstein general relativity.

• Gravitational effects are observed as acceleration,
more precisely as deflection of spacetime geodesics,
such as particle trajectories or light rays. Examples
are excessive rotational velocities for mass particles
in galactic orbits, and galactic lensing of radiation.

• Theory that departs from standard particle physics
and cosmology only by postulating universal
conformal symmetry has been found to explain such
phenomena, without requiring dark matter.

• Conformal gravity and the conformal Higgs model
fit empirical data on galactic rotational velocities,
on Hubble expansion including dark energy, and on
dark galactic halos[2, 3, 4].
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• Relativistic variational field theory[5, 2]:

– Metric tensor gµν, determinant g, such that
ds2 = gµνdx

µdxν for xµ = {t, x, y, z}.
– Flat-space diagonal metric {1,−1,−1,−1}.
– Riemannian scalar Lagrangian density L.
– Action integral I =

∫
d4x
√
−gL.

– Coupled fields: stationary I =
∑
a Ia, given La.

– Metric functional derivative Xµν = 1√
−g

δI
δgµν

.

– Energy-momentum tensor Θµν
a = −2Xµν

a .
– Einstein equations:

∑
aX

µν
a = 0 implies

Xµν
g = 1

2

∑
a6=g Θµν

a , trace gµν
∑
aX

µν
a = 0.

• Local Weyl scaling (conformal) symmetry[6, 7]:

– gµν(x)→ gµν(x)Ω2(x), for fixed coordinates xµ.
– Scalar field: Φ(x)→ Φ(x)Ω−1(x).
– Postulate Ia invariant for any differentiable Ω(x),

for all bare fields.
– Massless fermion and gauge boson fields exhibit

strict conformal symmetry.
– Standard general relativity and the electroweak

Higgs model are not conformal.
– Trace gµνΘµν

a = 0 for conformal La.
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Surprising properties of conformal theory

• Universal conformal symmetry, postulated here
for all elementary massless physical fields, retains
standard fermion and gauge boson theory but
modifies Einstein-Hilbert general relativity and the
Higgs scalar field model, with no new physical fields.

• Conformal gravitational Lagrangian density Lg is
the uniquely defined quadratic contraction of the
conformal Weyl tensor[6, 7]. A theorem by
Lanczos reduces it to RµνRµν − 1

3R
2, for Ricci

tensor Rµν and scalar R = gµνR
µν. The Weyl

tensor vanishes identically in the uniform, isotropic
geometry appropriate to Hubble expansion.

• LΦ for conformal Higgs scalar field Φ[8], which
contains (w2 − 1

6R − λΦ†Φ)Φ†Φ, is also uniquely
defined. The term in R affects the gravitational
field equation. Since the very early electroweak
transition, the Higgs field must exist with nonzero
amplitude throughout spacetime.
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• Since uniform geometry eliminates Lg, the most
plausible assumption is that the conformal Higgs
model is responsible for observed Hubble expansion.

• The effective gravitational constant derived from
LΦ depends on parameters of the Higgs electroweak
model. It has opposite sign and different magnitude
from the Newton constant.

• Uniform mass-energy density ρm drives centrifugal
cosmic acceleration since the earliest cosmos,
possibly the mechanism for the early acceleration
characterized as a Big Bang.

• Parameter w2 becomes dark energy in the
gravitational field equation of the conformal
Higgs model (modified Friedmann equation).
Net acceleration due to ρm and w2 decreases
asymptotically to zero in the remote future.

• Dependence of Hubble acceleration on ρm and
cosmic curvature can be shown to determine
centripetal acceleration attributed to dark halos,
observed in galactic rotation velocities.
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The conformal Higgs model and Hubble
expansion

• The mathematics of general relativity can be
intimidating. This is vastly simplified in two very
special geometric situations, both used here to
quantify observed cosmological phenomena.

• In a uniform, isotropic universe, averaged over
all local structure such as galaxies, the geometry
reduces to a single active coordinate, the time as
measured by any so-called comoving observer, at
any selected spacetime event.

• This implies the Robertson-Walker (RW) metric,

ds2
RW = dt2 − a2(t)( dr2

1−kr2 + r2dω2), originally
introduced by Friedmann and LeMaitre to describe
cosmic evolution. Here k is a curvature constant.

• The conformal Higgs model in RW geometry implies
a modified time-dependent Friedmann cosmic
evolution equation[8].
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• Given cosmic average mass-energy density ρm =
Θ00
m , the modified Friedmann equation for scale

factor a(t) is ȧ2

a2 + k
a2 − ä

a = 2
3(κ̄ρm + Λ̄). Vanishing

trace removes the usual second Friedmann equation.

• Gravitational constant κ̄ < 0 and dark energy Λ̄ > 0
are defined by LΦ for the Higgs scalar field[8].

• This modified Friedmann equation, which derives
dark energy from the Higgs model, has been
applied to fit detailed observed data on the Hubble
expansion[8].

• Dividing the Friedmann equation by ȧ2

a2 determines
dimensionless sum rule Ωm + Ωk + ΩΛ + Ωq = 1.
This adds acceleration weight Ωq = −q = äa

ȧ2 to the
sum rule of standard theory, usually presented as a
pie-chart of the cosmic energy budget.

• Mannheim[9] fitted supernovae data as accurately
as ΛCDM theory by setting ΩΛ = 0.37 and Ωm = 0
in the standard sum rule, eliminating dark matter.
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• However, for Ωm = 0, standard sum rule Ωk+ΩΛ =
1 would imply current curvature weight Ωk(t0) =
0.63, much larger than its consensus empirical value.

• The conformal Higgs model removes this problem
of excessive curvature. Solving the modified
Friedmann equation with Ωm = Ωk = 0[8], a fit
to Type Ia supernovae data for redshifts z ≤ 1
finds ΩΛ(t0) = 0.732, in agreement with consensus
empirical value ΩΛ(t0) = 0.726± 0.015.

• The computed acceleration weight is Ωq(t0) =
0.268. Only one independent parameter is required
for z ≤ 1. In the current epoch, dark energy and
acceleration terms are of comparable magnitude,
the curvature term is small, and other terms are
negligible.

• A numerical solution from t = 0 to current t = t0[8]
is determined by four fixed parameters, fitted to two
dimensionless ratios that characterize CMB acoustic
peak structure[10] as well as to redshifts for z ≤ 1.
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Dark energy

• Higgs parameter w2, which breaks conformal
symmetry, must be a dynamical consequence of
the theory. w2 becomes dark energy in the modified
Friedmann cosmic evolution equation[8].

• Coupled scalar and gauge boson fields produce
gauge boson mass through the Higgs mechanism.
Conformal symmetry introduces an interaction with
gravitation in the scalar field Lagrangian density,
which extends the Higgs model to include the metric
tensor.

• This preserves the Higgs mechanism for gauge boson
masses and the trace condition for the coupled
field equations[4]. The resulting cosmological
time dependence of Ricci scalar R determines a
nonvanishing neutral gauge field source current
density[11].
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• The Higgs scalar field is dressed by an induced
neutral gauge boson field. Parameter w2 is
determined as self-interaction of the scalar field
due to the induced accompanying gauge field.

• The very small implied scale parameter offers an
explanation, unique to conformal theory, of the huge
disparity in magnitude between parameters relevant
to cosmological and elementary-particle phenomena.

• If derivatives of Φ can be neglected, the scalar field
equation has an exact solution given by Φ†Φ =
φ2

0 = (w2 − 1
6R)/2λ. The phase is arbitrary, so φ0

can be a real constant. Its experimental value is
φ0 = 180GeV .

• From the scalar field equation, φ2
0 = −ζ/2λ, where

ζ = 1
6R − w2. Computed from the integrated

modified Friedmann equation, ζ(t0) = 1.224 ×
10−66eV 2[11]. Given φ0 = 180GeV , the empirical
value of dimensionless Higgs parameter λ = −1

2ζ/φ
2
0

is −0.189× 10−88.
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• Using parameters fitted by integrating the modified
Friedmann equation from t = 0 to t0, dark energy
weight ΩΛ(t0) = w2 = 0.717, in Hubble units.
Hence w = 0.847~H0 = 1.273 × 10−33eV , where
H0 is the Hubble constant.

• Solving the coupled field equations for gµν,Φ, and
induced neutral gauge field Zµ, using computed

time derivative φ̇0
φ0

(t0), gives w ' 2.651~H0 =
3.984 × 10−33eV [11]. A more accurate calculation
should include charged fields W±µ and the presently
unknown time dependence of Higgs parameter λ.

• This approximate calculation agrees in magnitude
with the value implied by dark energy Hubble
weight ΩΛ(t0). This level of agreement justifies
the conclusion that conformal theory explains both
the existence and magnitude of dark energy.

– Typeset by FoilTEX – 11



• For λ < 0 the conformal Higgs scalar field does
not have a stable fluctuation, required to define a
massive Higgs particle. The recent observation of
a particle or resonance at 125 GeV is consistent
with such a Higgs boson, but may prove to be an
entirely new entity when more definitive secondary
properties are established.

• Because the conformal Higgs field retains the finite
field amplitude essential to gauge boson and fermion
mass, while accounting for empirically established
dark energy, an alternative explanation of the recent
125GeV resonance might avoid a severe conflict with
observed cosmology.
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Conformal gravity and galactic rotational
velocities

• In static, spherically symmetric geometry, the only
relevant coordinate is the radius from an assumed
central point, for example the mass center of the
sun or of our galaxy. The tensorial equations of
relativity reduce to ordinary differential equations in
the radial coordinate.

• This is the basic idea behind the exterior
Schwarzschild (ES) metric, written in conformal
theory as

ds2
ES = B(r)dt2 − dr2

B(r) − r
2dω2,

where dω2 = dθ2 + sin2 θdφ2.

• Mannheim and Kazanas[12, 7] derived an exact ES
solution for conformal gravity outside a spherical
source density, valid for rotation velocities in
the outer reaches of galaxies. The gravitational
potential is B(r) = 1− 2β/r+ γr−κr2. A circular
orbit with velocity v is stable if
v2 = 1

2rdB/dr = β/r + γr/2− κr2.
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• Parameter β = GM is proportional to total galactic
baryonic mass M if dark matter is omitted. Defining
N∗ as total visible plus gaseous mass in solar
units, and neglecting κ, Mannheim determined two
universal parameters such that γ = γ∗N∗ + γ0

fits rotational data for eleven typical galaxies, not
invoking dark matter[13, 2].

• This fit of conformal gravity to rotational data
has recently been extended, including parameter κ,
to 138 galaxies whose orbital velocities are known
outside the optical disk[14, 15, 16], using only three
universal parameters in addition to Newtonian G.

• The fit of mass-independent γ0 to observed data
implies a significant effect of the cosmic background,
external to a baryonic galactic core[13]. This implies
an isotropic gravitational field with a cosmological
source, hence a spherical gravitational halo.
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• For spiral galaxies, v2 is nearly constant over a large
range of r where Keplerian acceleration a ' a0,
an empirical universal constant. Empirical Tully-
Fisher relation v4 = a0GM for galactic mass M is
valid in particular for largely gaseous galaxies, whose
baryonic mass is well-defined[17]. It does not follow
readily from the ΛCDM model of a dark matter
galactic halo.

• Well inside halo radius rH, conformal velocity
function v2(r) = GM/r + γr/2 has a broad local
minimum at r2

x = 2GM/γ. This confirms the
observed flat v2(r) curve for spiral galaxies.

• Evaluated at rx, γrx/2 = GM/rx, such that
v4(rx) = 4(γrx/2)(GM/rx) = 2γGM . If γ∗N∗ �
γ0 and dark matter is omitted, this is an exact
baryonic Tully-Fisher relation.
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Dark halos without dark matter

• Extended dark halos are detected by gravitational
effects including excessive rotation velocities
and gravitational lensing. Understanding these
phenomena requires use of both ES and RW metrics.

• Starting from the primordial cosmos, postulated to
have uniform, isotropic mass-energy density ρm,
any concentration of matter must extract this
matter from a surrounding depleted background.
Primordial ρm is condensed into galactic density ρg.
Total galactic mass M is missing from a surrounding
depleted uniform, isotropic background.

• Gravitational effects of a depleted background
could be attributed to a halo of dark matter
surrounding a galaxy. This is the current consensus
model of galactic halos. Conformal theory, which
eliminates the need for dark matter to explain
excessive rotation velocities, provides an alternative
interpretation of halo phenomena[18, 4].
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• Modeled by a totally depleted sphere of radius rH,
4πρmr3

H/3 = M . The integral of ρg − ρm must
vanish. A very large halo radius rH is implied. If
ρg/ρm ' 105 the ratio of radii is 10

5
3 = 46.4, so

that a galaxy of radius 10kpc would be embedded
in a depleted halo of radius 464kpc.

• Hubble expansion is characterized by centrifugal
acceleration[8]. In conformal theory[18], removal of
mass-energy density ρm from a halo reduces this
background acceleration. The net observed effect
is centripetal acceleration in outer galactic orbits
within a dark halo, parametrized by Mannheim’s
parameter γ0[2].

• Gravitational field equation Xµν
g + Xµν

Φ = 1
2Θµν

m

has an exact solution for rg ≤ r ≤ rH. ES metric
parameters proportional to galactic mass M , valid
for Xµν

g = 0, r ≥ rg, are determined by matching
an assumed spherically averaged internal solution at
rg to the explicit external solution. Xµν

Φ = 0 is
solved exactly for r ≤ rH in the RW metric by the
modified Friedmann equation, omitting ρm.
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• The value of acceleration parameter γ0 in the
ES metric must be adjusted to fit the observable
acceleration inferred in the RW metric from the
Friedmann equation with and without a mass term.

• The procedure is to compute acceleration parameter
Ωq for mass-energy densities ρ(halo) = 0 and
ρ(cosmos) = ρm. The physically relevant γ0 is
determined from the difference ∆Ωq = Ωq(halo)−
Ωq(cosmos).

• This analysis relates ∆Ωq = Ωq(halo)−Ωq(cosmos)
to ∆ρ = ρg − ρm, which reduces to −ρm in the
halo. From the dimensionless sum rule, Ωq =
1−Ωk−ΩΛ−Ωm. If curvature and dark energy are
independent of ρm, ∆Ωq = −∆Ωm = Ωm(ρm) <
0. This centripetal acceleration is consistent with
parameter γ0 > 0.

• In the ES metric, radial acceleration due to a
galactic halo is centripetal r̈

r = −1
2γ0c

2. At t0,
γ0 = −2h2∆Ωq = −2Ωm(ρm, t0) in Hubble units.
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• To the extent that dark energy ΩΛ and cosmic
background Ωk are independent of ρm, they cancel
out of ∆Ωq. Because fixed coordinate r is multiplied
by a(t), observed radial acceleration due to a

halo is r̈
r = ∆ä

a = ∆ȧ2

a2Ωq = ȧ2

a2Ωm(ρm), if Ωk is
independent of mass density.

• Given empirical γ0 = 3.06× 10−28m−1 and Hubble
length c

H0
= 1.313 × 1026m in MKS units,

dimensionless Ωm(ρm; t0) = −1
2γ0

c
H0

= −2.01 ×
10−2. This has the correct magnitude for fitted
parameters Ωk(t0) + Ωm(t0) = −1.25× 10−2.
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• What, if any, should be the gravitational effect of a
depleted background density? An analogy, in well-
known physics, is vacancy scattering of electrons in
conductors. In a complex material with a regular
periodic lattice independent electron waves are by no
means trivial functions, but they propagate without
contributing to scattering or resistivity unless there
is some lattice irregularity, such as a vacancy.

• Impurity scattering depends on the difference
between impurity and host atomic T-matrices.
Similarly, a photon or isolated mass particle follows
a geodesic in the cosmic background unless there
is some disturbance of the uniform density ρm.
Observed acceleration is deflection of a geodesic.

• Equivalence of galactic and displaced halo mass
resolves the paradox for ΛCDM that despite any
interaction other than gravity, the amount of dark
matter inferred for a galactic halo is strongly
correlated with the galactic luminosity or baryonic
mass[19].
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Implications for cosmology and particle
physics

• Observed gravitational phenomena can be
understood without dark matter, at least for an
isolated galaxy.

• A new basic rule for mass-depleted halos is that total
depleted volume must be conserved in a galactic
collision. Hence halos cannot overlap.

• The Newtonian virial theorem is not valid.

• Interactions between galaxies must be reconsidered
with revised theory.

• Conformal theory retains the Higgs mechanism for
particle masses, but does not imply the existence of
a Higgs particle.

• Dark energy is an unanticipated consequence of the
Higgs scalar field model for gauge boson masses.

– Typeset by FoilTEX – 21



• Dark energy is self-interaction due an induced
neutral gauge field, producing Higgs parameter w2.

• Higgs parameter λ could be produced by an induced
diboson field, W+W− interacting with Z0Z0, at
approximately 125GeV[20].

• The recently observed 125GeV resonance may be
such a completely new particle or field.
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Appendix: semiclassical coupled field
equations

• The Higgs model derives gauge boson mass from
coupling via gauge covariant derivatives to a
postulated SU(2) doublet scalar field Φ. SU(2)
symmetry is broken by a solution of the scalar field
equation such that Φ†Φ = φ2

0, a spacetime constant.
Only the charge-neutral component of doublet field
Φ is nonzero.

• Generation of gauge field masses follows from a
semiclassical theory of coupled scalar and gauge
fields, extended here to include the gravitational
metric tensor field in RW geometry. This is further
simplified by considering only neutral vector field
Zµ. Numerical results follow from solving nonlinear
coupled field equations.
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• Gauge invariance replaces bare derivative ∂µ by
gauge covariant derivative

Dµ = ∂µ −
i

2
gzZµ (1)

This retains LZ and augments conformal

L0
Φ = (∂µΦ)†∂µΦ− 1

6
RΦ†Φ (2)

by coupling term

∆L = (DµΦ)†DµΦ− (∂µΦ)†∂µΦ =
i

2
gzZ

∗
µΦ†∂µΦ− i

2
gzZ

µ(∂µΦ)†Φ +
1
4
g2
zΦ
†Z∗µZ

µΦ. (3)
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• Given mass parameter mZ and source current
density JµZ, the parametrized part of L for a complex
vector field is

LZ +
1
4
Z∗µνZ

µν =
1
2
m2
ZZ
∗
µZ

µ − 1
2

(Z∗µJ
µ
Z + ZµJ∗Zµ). (4)

The parametrized field equation for Zµ is

∂νZ
µν =

2√
−g

δ∆I
δZ∗µ

= m2
ZZ

µ − JµZ. (5)

∆L from Dµ, Eq.(3), determines parameters for
field Zµ:

2√
−g

δ∆I
δZ∗µ

=
1
2
g2
zΦ
†ΦZµ + igzΦ†∂µΦ (6)

implies not only Higgs mass formula m2
Z = 1

2g
2
zΦ
†Φ,

but also field source density JµZ = −igzΦ†∂µΦ.
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• ∆LΦ = (w2−λΦ†Φ)Φ†Φ in the parametrized Higgs
model. The parametrized scalar field equation is

∂µ∂
µΦ +

1
6
RΦ =

1√
−g

δ∆I
δΦ†

= (w2 − 2λΦ†Φ)Φ. (7)

Using ∆L derived from Dµ, Eq.(3),

1√
−g

δ∆I
δΦ†

=
1
4
g2
zZ
∗
µZ

µΦ +
i

2
gz(Z∗µ + Zµ)∂µΦ. (8)

Comparison implies w2 = 1
4g

2
zZ
∗
µZ

µ.

• Neglecting derivatives of induced gauge field Zµ,
Eq.(5) reduces to Zµ = JµZ/m

2
Z. Time variation

determines pure imaginary J0
Z = −igzφ∗0∂0φ0 =

−igz φ̇0
φ0
φ∗0φ0, defining real parameter φ̇0

φ0
. Implied

pure imaginary Z0 does not affect λ. The scalar

field equation implies w2 = 1
4g

2
z|Z|2 = (φ̇0

φ0
)2.
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