The Hierarchy Problem
&
Compositeness

Riccardo Rattazzi
The Standard Model as an Effective Theory

with fundamental scale \(\Lambda_{UV}^2 \gg 1 \text{ TeV} \)
The Standard Model as an Effective Theory
with fundamental scale \(\Lambda_{UV}^2 \gg 1 \text{ TeV} \)

\[
\mathcal{L}_{SM} = \mathcal{L}_{kin} + g A_\mu \bar{F} \gamma_\mu F + Y_{ij} \bar{F}_i H F_j + \lambda (H^\dagger H)^2
\]
The Standard Model as an Effective Theory
with fundamental scale $\Lambda_{UV}^2 \gg 1\, \text{TeV}$

$$\mathcal{L}_{SM} = \mathcal{L}_{\text{kin}} + g A_\mu \bar{F} \gamma_\mu F + Y_{ij} \bar{F}_i H F_j + \lambda (H^\dagger H)^2$$

$$+ \frac{b_{ij}}{\Lambda_{UV}} L_i L_j H H$$

$$+ \frac{c_{ijkl}}{\Lambda_{UV}^2} \bar{F}_i F_j \bar{F}_k F_\ell + \frac{c_{ij}}{\Lambda_{UV}} \bar{F}_i \sigma_{\mu\nu} F_j G^{\mu\nu} + \ldots$$

$$+ \ldots$$

$d=4$

$d>4$
The Standard Model as an Effective Theory

with fundamental scale $\Lambda_{UV} \gg 1 \text{ TeV}$

\[\mathcal{L}_{SM} = \mathcal{L}_{kin} + g A_\mu \bar{F} \gamma^\mu F + Y_{ij} \bar{F}_i H F_j + \lambda (H^\dagger H)^2 \]

\[+ \frac{b_{ij}}{\Lambda_{UV}} L_i L_j H H \]

\[+ \frac{c_{ijkl}}{\Lambda_{UV}^2} \bar{F}_i F_j \bar{F}_k F_\ell \]

\[+ \frac{c_{ij}}{\Lambda_{UV}} \bar{F}_i \sigma_{\mu\nu} F_j G^{\mu\nu} + \ldots \]

\[+ \ldots \]

$\Lambda_{UV} \rightarrow \infty$ (pointlike limit) nicely accounts for ‘what we see’
The Standard Model as an Effective Theory

with fundamental scale \(\Lambda_{UV}^2 \gg 1 \text{ TeV} \)

\[
\mathcal{L}_{SM} = \mathcal{L}_{kin} + g A_\mu \bar{F} \gamma_\mu F + Y_{ij} \bar{F}_i H F_j + \lambda (H^\dagger H)^2
\]

\[+ \frac{b_{ij}}{\Lambda_{UV}} L_i L_j H H\]

\[+ \frac{c_{ijkl}}{\Lambda_{UV}^2} \bar{F}_i F_j \bar{F}_k F_\ell + \frac{c_{ij}}{\Lambda_{UV}} \bar{F}_i \sigma_{\mu\nu} F_j G^{\mu\nu} + \ldots\]

\[+ \ldots\]

\(\Lambda_{UV} \to \infty \) (pointlike limit) nicely accounts for ‘what we see’
\[\Lambda_{UV} \quad \text{scale invariance} \quad \Lambda_{IR} \]

hierarchy’s naturalness \(\leftrightarrow \) fixed point stability

\(m_H^2 \equiv \text{strongly relevant} \) perturbation
Λ_{UV} ———— hierarchy's naturalness \leftrightarrow fixed point stability

\sim scale invariance

Λ_{IR} ————

unstable

stable

marginal

$m_H^2 \equiv$ strongly relevant perturbation

$|T - T_c| \ll T$
Λ_{UV}

\sim scale invariance

Λ_{IR}

hierarchy’s naturalness \iff fixed point stability

unstable

stable

marginal

$|T - T_c| \ll T$

$m_H^2 \equiv$ strongly relevant perturbation

picture courtesy of V. Rychkov who stole it anyway
Hierarchy see-saw

Standard Model up to some $\Lambda_{UV}^2 \gg 1 \text{ TeV}$
Hierarchy see-saw

Standard Model up to some $\Lambda_{UV}^2 \gg 1\,\text{TeV}$
Hierachy see-saw

Standard Model up to some \(\Lambda_{UV}^2 \gg 1 \text{ TeV} \)

\[\Lambda_{UV}^2 \ H^\dagger \ H \]

\[y_{ij} \ H \bar{F}_i F_j \]

\[m_H^2 = \epsilon \Lambda_{UV}^2 \ll \Lambda_{UV}^2 \]

Tuning!
Natural SM: \[\Lambda_{UV}^2 \lesssim 1 \text{ TeV} \]
Un-natural SM

The Higgs boson really is *The SM Higgs boson*
Flavor and approx B & L are theoretically appealing
... and experimentally boring

How would one understand the apparent tuning?

• Anthropic selection
• There is more than Effective Field Theory
• Intelligent design
Un-natural SM

The Higgs boson really is *The SM Higgs boson*
Flavor and approx B & L are theoretically appealing
... and experimentally boring

How would one understand the apparent tuning?

• Anthropic selection
• There is more than Effective Field Theory
• Intelligent design
Un-natural SM

The Higgs boson really is *The SM Higgs boson*

Flavor and approx B & L are theoretically appealing

... and experimentally boring

How would one understand the apparent tuning?

• Anthropic selection
• There is more than Effective Field Theory
• Intelligent design
Supersymmetry

\[m^2 H^\dagger H \]

\[m^2 = 0 \quad \text{enhanced UV symmetry} \]

\[m^2 \neq 0 \]

new states at

\[g_W v_F \sim 100 \text{ GeV} \]

Compositeness

\[\dim (H^\dagger H) \geq 4 \]

\[v_F \neq 0 \]

new states at

\[4\pi v_F \sim 2 \text{ TeV} \]

In both cases, must use ingenuity to satisfy flavor and EW constraints
Natural SM

Supersymmetry

\[m^2 H^\dagger H \]

\[m^2 = 0 \text{ enhanced UV symmetry} \]

\[m^2 \neq 0 \]

new states at

\[g_W v_F \sim 100 \text{ GeV} \]

Compositeness

\[\dim (H^\dagger H) \geq 4 \]

\[v_F \neq 0 \]

new states at

\[4\pi v_F \sim 2 \text{ TeV} \]

In both cases, must use ingenuity to satisfy flavor and EW constraints
Collider data display no signal of compositeness for quarks, leptons and *transversely polarized* vector bosons.

Plausible scenario

\[E_{\text{TeV}} \]

\[\Lambda_{\text{UV}} \]

\[q, \ell, \gamma, W_T, Z_T, g \]

\[W^\pm_L, Z^0_L, \ldots \]
Need $\Lambda_{UV} \gg \text{TeV}$ to filter out unwanted effects and produce a realistic Flavor story.

Scale (conformal) invariant theories are thus an essential ingredient of model building.
80’s: asymptotically free gauge theory (Technicolor)

2000’s: Holographic CFTs (Randall-Sundrum)

‘Abstract CFT’ characterized by
- symmetry
- operator content

Λ_{UV}

• Higgs’ dynamics

TeV
The structure underlying the Higgs sector

\[H = \begin{pmatrix} h_1 + ih_2 \\ h + ih_3 \end{pmatrix} \]

must be a pseudo-Golstone multiplet

\[W^\pm, Z, h \]

Georgi, Kaplan '84
Banks '84

Arkani-Hamed, Cohen, Katz, Nelson '02
Agashe, Contino, Pomarol '04
Simplest options compatible with $\rho \simeq 1$

$SO(5)/SO(4)$ \quad \rightarrow \quad H$

$SO(6)/SO(5)$ \quad \rightarrow \quad H \oplus \eta$

$SO(6)/SO(4) \times U(1)$ \quad \rightarrow \quad H_1 \oplus H_2$

$SO(4,1)/SO(4)$ \quad \rightarrow \quad H$
Composite sector is *broadly* described by:

Giudice, Grojean, Pomarol, RR, 2007

✦ one mass scale m_ρ (of order TeV)

✦ one coupling g_ρ

✦ decay constant $f \sim \frac{m_\rho}{g_\rho}$

\[g_\rho \sim g_{KK} \quad g_\rho \sim \frac{4\pi}{\sqrt{N}} \]

\[= g_\rho \bar{\Psi} \Psi \Phi \quad \times \quad = \frac{g_\rho^2}{m_\rho^2} \bar{\Psi} \Psi \bar{\Phi} \Psi \]

Thursday, January 10, 2013
Origin of Higgs potential

strongly coupled Higgs sector

SM matter & gauge fields

global symmetry weakly broken

\[V(h) = \frac{m_{\rho}^4}{g_{\rho}^2} \times \frac{\lambda_t^2}{16\pi^2} \times F(h/f) \]

\[\sim \frac{\lambda_t^2}{16\pi^2} m_{\rho}^2 H^\dagger H + \frac{g_{\rho}^2}{16\pi^2} \lambda_t^2 (H^\dagger H)^2 + \cdots \]
Origin of Higgs potential

strongly coupled Higgs sector

SM matter & gauge fields

"Yukawa"

gauge

global symmetry weakly broken

\[V(h) = \frac{m_{\rho}^4}{g_{\rho}^2} \times \frac{\lambda_t^2}{16\pi^2} \times F(h/f) \]

\[\sim \frac{\lambda_t^2}{16\pi^2} m_{\rho}^2 H^\dagger H + \frac{g_{\rho}^2}{16\pi^2} \lambda_t^2 (H^\dagger H)^2 + \cdots \]
Vacuum dynamics

unbroken $SU(2)_L \times U(1)$

$\begin{array}{c}
v = 0
\end{array}$

maximally broken

$\begin{array}{c}
v = f
\end{array}$

$V \propto F(h/f)$ generically $\frac{v^2}{f^2} = O(1)$

EW precision observables

$\mathcal{O} \sim \frac{v^2}{f^2} \times \mathcal{O}_{\text{TechniColor}}$
simply tune \(\frac{v^2}{f^2} \sim 0.05 \div 0.1 \)

be clever: Little Higgs

\[V \propto F(h/f) \quad \text{generically} \quad \frac{v^2}{f^2} = O(1) \]

\[\mathcal{O} \sim \frac{v^2}{f^2} \times \mathcal{O}_{\text{TechniColor}} \]
Vacuum dynamics

\[V \propto F(h/f) \text{ generically}\]

simply tune \(\frac{v^2}{f^2} \sim 0.05 \div 0.1 \)

be clever: Little Higgs

EW precision observables

\[\mathcal{O} \sim \frac{v^2}{f^2} \times \mathcal{O}_{\text{TechniColor}} \ll \mathcal{O}_{\text{TechniColor}} \]
Two Ways to Flavor

Bilinear: ETC, conformalTC
Dimopoulos, Susskind
Holdom
....
Luty, Okui

Linear: partial compositeness
D.B. Kaplan
....
Huber
RS with bulk fermions
Yukawas are *irrelevant* m_t hard to produce

$$\dim (\bar{q}qH) = 4 + (d_H - 1) > 4$$

question: how close can I push $d_H \rightarrow 1$
without getting back the hierarchy problem?

$$\dim (H^\dagger H)$$

Rattazzi, Rychkov, Tonni, Vichi ’08
Poland, Simmons-Duffin, Vichi ’11
Yukawas are irrelevant. m_t hard to produce.

$$\dim(H) \equiv d_H > 1$$

$$\dim(\bar{q}qH) = 4 + (d_H - 1) > 4$$

Question: how close can I push $d_H \to 1$ without getting back the hierarchy problem?
Flavor from partial compositeness

\[\mathcal{L}_{Yukawa} = \epsilon^i_q q^i_L \Psi^i_q + \epsilon^i_u u^i_L \Psi^i_u + \epsilon^i_d d^i_L \Psi^i_d \]

\[Y_u^{ij} \sim \epsilon^i_q \epsilon^j_u g_* \]

\[Y_d^{ij} \sim \epsilon^i_q \epsilon^j_d g_* \]

\(\Psi \) = composite with dimension \(\sim \frac{5}{2} \)

\(\epsilon^i_q, \epsilon^i_u, \epsilon^i_d \) = dimensionless

- Hypothesis seems a bit wishful to me, but I see no other option
- Problems of minimal technicolor greatly alleviated, but not eliminated
Flavor transitions controlled by selection rules

$\Delta F=2$

\[\epsilon_q^i \epsilon_d^j \epsilon_q^k \epsilon_d^\ell \times \frac{g_\rho^2}{m_\rho^2} (\bar{q}^i \gamma^\mu d^j)(\bar{q}^l \gamma_\mu d^l) \]

$\Delta F=1$

\[\epsilon_q^i \epsilon_u^j g_\rho \times \frac{v}{m_\rho^2} \times \frac{g_\rho^2}{16\pi^2} \bar{q}^i \sigma_{\mu\nu} u^j G_{\mu\nu} \]
Bounds & an intriguing hint

Keren-Zur, Lodone, Nardecchia, Pappadopulo, RR, Vecchi '12

<table>
<thead>
<tr>
<th>ϵ_k</th>
<th>$m_\rho \gtrsim 10$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon'/\epsilon, \ b \to s\gamma$</td>
<td>$m_\rho \gtrsim \frac{g_\rho}{4\pi} \times (10 - 15)$ TeV</td>
</tr>
<tr>
<td>d_n</td>
<td>$m_\rho \gtrsim \frac{g_\rho}{4\pi} \times (20 - 40)$ TeV</td>
</tr>
</tbody>
</table>

CP violation in D decays

$$\Delta a_{CP} = a_{KK} - a_{\pi\pi} = -(0.67 \pm 0.16)\%$$

$$m_\rho \simeq \frac{g_\rho}{4\pi} \times 10$$ TeV

- **connection with weak scale not perfect**
- **Not crazy at all to see deviation in D’s first !**
- **d$_n$ should be next**
\[\mu \to e\gamma \quad \frac{\sqrt{m_\mu m_e}}{m_\rho^2} \bar{\mu} \sigma_{\alpha\beta} e F^{\alpha\beta} \]

MEG: \(\text{Br}(\mu \to e\gamma) < 2.4 \times 10^{-12} \quad m_\rho \gtrsim 150 \text{ TeV} \)

Partial compositeness clearly cannot be the full story
Must assume strong sector possesses some flavor symmetry

Range of possibilities

\[U(1)_e \times U(1)_\mu \times (1)_\tau \]

\[\cdots \cdots \]

\[SU(3) \times SU(3) \times \cdots \]

Redi, Weiler ’11
Barbieri et al. ’12
Higgs potential, fine-tuning and expectations at the LHC
Higgs’s mass versus top-partners’

\[V(h) = O(\lambda^2_L) + O(\lambda^2_R) \]

\[\lambda_L \lambda_R \sim \lambda_t g_T \]

best option

\[t_R \] is fully composite SO(5) singlet

\[\lambda_L \sim \lambda_t \]

\[\lambda_R \sim g_T \]

\[V(h) = \frac{m_T^4}{g_T^2} \times \frac{\lambda^2_t}{16\pi^2} \times F(h/f) \]
Higgs’s mass versus top-partners’

\[V(h) = O(\lambda_L^2) + O(\lambda_R^2) + \ldots \]

\[\lambda_L \lambda_R \sim \lambda_t g_T \]

best option for \(t_R \) is fully composite \(\text{SO}(5) \) singlet

\[\lambda_L \sim \lambda_t \]
\[\lambda_R \sim g_T \]

\[V(h) = \frac{m_T^4}{g_T^2} \times \frac{\lambda_t^2}{16\pi^2} \times F(h/f) \]

Mrazek et al, ‘11
Pomarol, Riva ‘12
\[V = \frac{3\lambda_t^2 m_T^2}{16\pi^2} \left(ah^2 + bh^4/f^2 + \ldots \right) \]
$$V = \frac{3\lambda_t^2 m_T^2}{16\pi^2} \left(a h^2 + b h^4 / f^2 + \ldots \right)$$
\[V = \frac{3\lambda_t^2 m_T^2}{16\pi^2} \left(a h^2 + b h^4 / f^2 + \ldots \right) \]

Total tuning \sim area

\[\left(\frac{430 \text{ GeV}}{m_T} \right)^2 \times \frac{4}{g_T^2} \]
The main test of naturalness is the search for fermionic top partners

but how to proceed? given we do not have in our hand
a truly compelling and calculable model

how to help our experimental colleagues to express the
results of their searches in the light of more interesting
scenarios than, say, a fourth family
Simplified Model Ideology

in the end model builders mistrust full fledged models

De Simone, Matsedonkyi, RR, Wulzer ’12
Simplified Model Ideology

in the end model builders mistrust full fledged models

De Simone, Matsedomkyi, RR, Wulzer ’12

Combining

• choice for ψ quantum numbers
• hypothesis on UV origin of λ_t
• symmetry, selection rules, power counting

→ a handful of models

→ a handful of parameters

Focus on on just Ψ
Production

Decay

Ex.: $\Psi_{5/3} \in \left(\frac{1}{2}, \frac{1}{2}\right)$

Contino, Servant 2008
\[\Psi_{5/3} \text{ et } \Psi_{-1/3} \in \left(\frac{1}{2}, \frac{1}{2} \right) \] constrained by 4th family search \(b' \rightarrow Wt \)
same sign dileptons (trileptons) + b + 3 (2) jets

\[\lambda = 3 \]
\[\lambda = 0.3 \]

\[M_{5/3} \]

\[C_1 \]

\[\xi \equiv \frac{\nu^2}{f^2} = 0.2 \]

At 14 TeV with ab\(^{-1}\), one expects a reach of up to 2 TeV mass

\[\text{Mrazek, Wulzer '10} \]
Effective Lagrangian for a composite light Higgs boson
(+ pseudo-Goldstone hypothesis)

Giudice, Grojean, Pomarol, RR, 2007

Two leading operators in effective lagrangian
\[\# \frac{1}{2 f^2} \partial_\mu |H|^2 \partial^\mu |H|^2 \]

\[\# \frac{y_i}{f^2} (\bar{f}_i f_i H) |H|^2 \]

\[a \times \frac{2 m^2_V}{v} \approx 1 - \frac{1}{2} \frac{v^2}{f^2} < 1 \]

robust consequence of coset structure

\[c_i \times \frac{m_i}{v} \approx 1 + O\left(\frac{v^2}{f^2}\right) < 1 \]

generic but not a theorem

\[b \times \frac{m^2_V}{v^2} \approx 1 - 2 \frac{v^2}{f^2} \]

\[\propto \frac{m_i}{f^2} \]

New!
\[
\Delta \epsilon_1 = -\frac{3g^2 \tan \theta_w^2}{32\pi^2} (1 - a^2) \ln(m_\rho/m_h)
\]

\[
\Delta \epsilon_3 = \frac{g^2}{96\pi^2} (1 - a^2) \ln(m_\rho/m_h)
\]

Barbieri, Bellazzini, Rychkov, Varagnolo 07

\[
v^2 \sim 0.1 \div 0.2
\]

is tolerable

\[
\Delta \epsilon_1 \gtrsim 10^{-3}
\]

\[
M_\Psi < 1 \text{ TeV}
\]
\[\Delta \epsilon_1 = -\frac{3g^2 \tan \theta_W^2}{32\pi^2} (1 - a^2) \ln(m_\rho/m_h) \]

\[\Delta \epsilon_3 = \frac{g^2}{96\pi^2} (1 - a^2) \ln(m_\rho/m_h) \]

Barbieri, Bellazzini, Rychkov, Varagnolo 07

\[\frac{v^2}{f^2} = 1 - a^2 \]

\[\frac{v^2}{f^2} \sim 0.1 \div 0.2 \]

is tolerable

\[\Delta \epsilon_1 \gtrsim 10^{-3} \]

\[M_\Psi < 1 \text{ TeV} \]
vector resonances

\[W \lambda \rho \lambda W \]

\[\Delta \epsilon_3 \sim \frac{m_W^2}{m_\rho^2} \]

\[\Delta \epsilon_3 < 10^{-3} \quad m_\rho > 3 \text{ TeV} \]

time not ripe to search for them at LHC
• overall reduction of fermion couplings is mildly favored over SM
• composite Higgs scenario not unfit
• 2HDM definitely unfit: either \(c_t > 1, c_b < 1 \) or \(c_t < 1, c_b > 1 \)
Alternative lagrangian, associated with new light & weakly coupled states

\[\mathcal{L}_{\text{eff}} = c_\gamma \frac{\alpha_s}{4\pi} \frac{h}{v} G_{\mu\nu} G^{\mu\nu} + c_\gamma \frac{\alpha}{4\pi} \frac{h}{v} F_{\mu\nu} F^{\mu\nu} \]
Future perspective on Higgs couplings
LHC $\sim 3 \text{ ab}^{-1}$: Single Higgs production

$\Delta a = 3\%$

$\Delta c_f = 5\%$

$\frac{v^2}{f^2} \sim 0.05$

LHC $\sim 1 \text{ ab}^{-1}$: Double Higgs production

$\frac{v^2}{f^2} \sim 0.1$

Grober, Muhlleitner 2010
Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer 2012

Linear Collider $\sim 1 \text{ ab}^{-1}$: Single Higgs production

$\frac{v^2}{f^2} \sim 0.01$
CLIC and beyond the Infinite
Composite h fails to fully unitarize VV scattering

\[
\mathcal{A}(VV \rightarrow VV) = \frac{s}{v^2} (1 - a^2) \quad \text{Goldstone} \quad \Rightarrow \frac{s}{f^2}
\]

\[
\mathcal{A}(VV \rightarrow hh) = \frac{s}{v^2} (a^2 - b) \quad \Rightarrow \frac{s}{f^2}
\]

LHC ab\(^{-1}\): sensitive to $\frac{v^2}{f^2} \gtrsim 0.3$

CLIC at 3TeV and 1 ab\(^{-1}\): $\frac{v^2}{f^2} \gtrsim 0.01$

Contino, Grojean, Pappadopulo, RR, Thamm in preparation
for \(\frac{v^2}{f^2} \gtrsim 0.1 \) can test coset structure by considering

\[
\begin{array}{c}
\text{symmetric coset} \\
\text{homogeneous space}
\end{array}
\]

versus

\[
\pi \to -\pi \quad \text{unbroken around any point}
\]

Processes with odd number of legs are suppressed

Notice: in effective lagrangian non trivial correlation of dim 6 and 8 operator coefficients
Precision versus energy frontier

indirect and semi-direct

sensitive to

\[\frac{1}{f^2} \sim \frac{g^2}{m^2_\rho} \]

HL-LHC ILC

5% 1%

factor 2 in \(f \)

direct

HL-LHC ILC

13 TeV 33 TeV

factor 2 in \(m_\rho \)
The most amazing thing about the Standard Model Higgs boson

Being Elementary and Lonely

I

• Baryon & Lepton number conservation
• Natural Flavor Conservation (CKM)
• custodial symmetry

{ emergent accidents of effective theory

II

the apparent tuning of its mass parameter
Higgs mass \hspace{1cm} \text{Yukawas} \hspace{1cm} \text{unwanted effects}
Flavor demands a rich spectrum of composite fermion operators, with non trivial quantum numbers under color, electroweak and flavor symmetry.

In UV \(\dim(\Psi) \sim 5/2 \), mimicking \(\dim(H_q) \sim 5/2 \) in SM.

Bosonic resonances: EW precision data want them heavy and strongly coupled. \(m_\rho > 3 \text{ TeV} \) with \(g_\rho \) as big as possible.

Fermionic top partners: Naturalness wants them below 1 TeV, while \(m_h = 125 \) wants them more weakly coupled.

If the scenario of Composite Higgs is realized in Nature it rather clear the underlying theory must be significantly more complex than a generic rescaled version of QCD!!
Scherzo

Gauge Invariance and Mass
Higgsless Standard Model in AdS$_4$

- AdS has 2+1 boundary which is reached in finite coordinate time by lightlike geodesics

\[ds^2 = \frac{L^2}{z^2} (-dt^2 + dx^2 + dy^2 + dz^2) \]

- eaten Goldstone is electron-antielectron two particle state
- theory weakly coupled
- no Higgs boson

\[m_W^2 \propto \frac{\alpha}{4\pi} \frac{1}{L^2} \]

Rattazzi, Redi 09