1. Consider two light-cone vectors n_{μ} and \bar{n}_{μ}, with $\bar{n} \cdot n=2$. Show that the operators

$$
P_{+}=\frac{\eta \vec{n} \hbar}{4}, \quad P_{-}=\frac{\eta \eta h}{4},
$$

are projection operators with $P_{+}+P_{-}=1$.
2. Use the projection operators $P_{ \pm}$to split the quark field into two components

$$
\psi(x)=\xi(x)+\eta(x)=P_{+} \psi(x)+P_{-} \psi(x)
$$

Show that
(a) $\curvearrowleft \xi(x)=0$,
(b) $\bar{\xi}(x) \xi(x)=0$,
(c) $\bar{\xi}(x) D_{\perp} \xi(x)=0$,
(d) $\bar{\xi}(x) \gamma^{\mu} \xi(x)=n^{\mu} \bar{\xi}(x) \frac{\vec{\pi}}{2} \xi(x)$.
3. Consider the QED Wilson line

$$
[z, y]=\exp \left[-i e \int_{\mathcal{C}} d x_{\mu} A^{\mu}(x)\right]
$$

where the curve \mathcal{C} goes from y to z. Show that under a gauge transformation $V(x)=\exp (i \alpha(x))$ the Wilson line transforms as

$$
[z, y] \rightarrow V(z)[z, y] V^{\dagger}(y)
$$

4. Consider the QCD Wilson line along some path $x^{\mu} \equiv x^{\mu}(s)$ with starting point $x^{\mu}(0)=y^{\mu}$. It is defined as

$$
\begin{equation*}
[x, y]=\mathbf{P} \exp \left[i g \int_{0}^{s} d s \boldsymbol{F}(s)\right] \tag{1}
\end{equation*}
$$

where the exponent is the color matrix

$$
\begin{equation*}
\boldsymbol{F}(s) \equiv \frac{d x^{\mu}}{d s} A_{\mu}^{b}(x(s)) t^{b} \tag{2}
\end{equation*}
$$

and \mathbf{P} denotes path-ordering which enforces that the matrices appearing at later point on the path arise on the left of earlier ones, for example

$$
\begin{equation*}
\mathbf{P}\left[\boldsymbol{F}\left(s_{1}\right) \boldsymbol{F}\left(s_{2}\right)\right] \equiv \boldsymbol{F}\left(s_{2}\right) \boldsymbol{F}\left(s_{1}\right) \text { for } s_{2}>s_{1} \tag{3}
\end{equation*}
$$

Show that the derivative of the Wilson line along the path vanishes,

$$
\frac{d x^{\mu}}{d s} D_{\mu}[x, y]=\left(\frac{d}{d s}-i g \boldsymbol{F}(s)\right)[x(s), y]=0 .
$$

To derive this property, expand the path-ordered exponential in a Taylor series and show that the n-th order term can be rewritten as an ordered integration

$$
\begin{aligned}
& \frac{(i g)^{n}}{n!} \int_{0}^{s} d s_{1} \int_{0}^{s} d s_{2} \cdots \int_{0}^{s} d s_{n} \mathbf{P}\left\{\boldsymbol{F}\left(s_{1}\right) \boldsymbol{F}\left(s_{2}\right) \cdots \boldsymbol{F}\left(s_{n}\right)\right\}= \\
& \quad(i g)^{n} \int_{0}^{s} d s_{1} \int_{0}^{s_{1}} d s_{2} \cdots \int_{0}^{s_{n-1}} d s_{n} \boldsymbol{F}\left(s_{1}\right) \boldsymbol{F}\left(s_{2}\right) \cdots \boldsymbol{F}\left(s_{n}\right)
\end{aligned}
$$

