1. Using the method of regions, verify that the leading term in the expansion of the integral I discussed in the lecture is given by

$$
I=\int_{0}^{\infty} d k \frac{k}{\left(k^{2}+m^{2}\right)\left(k^{2}+M^{2}\right)}=-\frac{1}{M^{2}}\left[\ln \frac{m}{M}+\mathcal{O}\left(\frac{m^{2}}{M^{2}}\right)\right] .
$$

The following integral is useful

$$
\int_{0}^{\infty} d x \frac{x^{a}}{(1+x)^{b}}=\frac{\Gamma(a+1) \Gamma(b-a-1)}{\Gamma(b)} .
$$

2. Compute the soft triangle loop integral

$$
I_{s}=i \pi^{-d / 2} \mu^{4-d} \int d^{d} k \frac{1}{k^{2}\left(n \cdot k \bar{n} \cdot p+p^{2}\right)\left(\bar{n} \cdot k n \cdot l+l^{2}\right)} .
$$

For progagators linear in k such as $b=n \cdot k \bar{n} \cdot p+p^{2}$, it is useful to work with modified Feynman parameterizations such as

$$
\frac{1}{a b}=\int_{0}^{\infty} d \eta \frac{1}{(a+\eta b)^{2}}, \quad \frac{1}{a b c}=\int_{0}^{\infty} d \eta_{1} \int_{0}^{\infty} d \eta_{2} \frac{2}{\left(a+\eta_{1} b+\eta_{2} c\right)^{3}}
$$

To perform the momentum integration, one can use the formula

$$
\int d^{d} k \frac{1}{\left(k^{2}+2 k \cdot Q-M^{2}\right)^{\alpha}}=(-1)^{\alpha} \frac{i \pi^{\frac{d}{2}}}{\left(M^{2}+Q^{2}\right)^{\alpha-\frac{d}{2}}} \frac{\Gamma\left(\alpha-\frac{d}{2}\right)}{\Gamma(\alpha)} .
$$

3. Compute the leading term in the expansion of the integral

$$
I(a)=\int_{0}^{\infty} d t \frac{\sin (t)}{(t+a)^{2}}
$$

for small a. To do so, introduce a factor t^{ϵ} into the integrand and use the method of regions.
To obtain the result, the integral given in Problem 1 as well as the identity

$$
\int_{0}^{\infty} d t t^{\alpha} \sin (t)=\Gamma(\alpha+1) \cos \frac{\pi \alpha}{2},
$$

are useful. This second integral converges for $-2<\alpha<0$.

