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Method of regions 24. 5. 2016

1. Using the method of regions, verify that the leading term in the expansion of the
integral I discussed in the lecture is given by
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The following integral is useful
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2. Compute the soft triangle loop integral

Is = iπ−d/2µ4−d
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.

For progagators linear in k such as b = n · k n̄ · p + p2, it is useful to work with
modified Feynman parameterizations such as
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To perform the momentum integration, one can use the formula
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3. Compute the leading term in the expansion of the integral

I(a) =

∫

∞

0

dt
sin(t)

(t+ a)2

for small a. To do so, introduce a factor tǫ into the integrand and use the method
of regions.

To obtain the result, the integral given in Problem 1 as well as the identity

∫
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dt tα sin(t) = Γ(α+ 1) cos
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2
,

are useful. This second integral converges for −2 < α < 0.


