1. The following Feynman diagrams

describe the production of an $e^{-}(p) e^{+}\left(p^{\prime}\right)$ pair from a virtual photon (first diagram) together with one (second diagram) or two soft photons (last two diagrams) emitted from the outgoing electron. The result for the first diagram is $\mathcal{M}_{0}=-i e \bar{u}(p) \gamma^{\mu} v\left(p^{\prime}\right)$. We consider the diagrams in the soft limit where the outgoing photons are soft, i.e. $k, k_{1}, k_{2} \rightarrow 0$.
(a) Show that the leading term in the expansion around the soft limit is

$$
\begin{equation*}
\mathcal{M}_{1}(k)=\mathcal{S}_{1}(k) \mathcal{M}_{0}=e \frac{\varepsilon \cdot p}{k \cdot p} \mathcal{M}_{0} \tag{1}
\end{equation*}
$$

for the emission of a single photon from the electron (second diagram), where ε is the polarization vector of the photon.
(b) Show that the result for the emission of two photons from the electron (i.e. the sum of the last two diagrams) is

$$
\begin{equation*}
\mathcal{M}_{2}\left(k_{1}, k_{2}\right)=\mathcal{S}_{2}\left(k_{1}, k_{2}\right) \mathcal{M}_{0}=\frac{e^{2}}{2} \frac{\varepsilon_{1} \cdot p}{k_{1} \cdot p} \frac{\varepsilon_{2} \cdot p}{k_{2} \cdot p} \mathcal{M}_{0}=\frac{1}{2!} \mathcal{S}_{1}\left(k_{1}\right) \mathcal{S}_{1}\left(k_{2}\right) \mathcal{M}_{0} \tag{2}
\end{equation*}
$$

where ε is the polarization vector of the photon.
2. Consider the following QED Wilson line operator

$$
S_{v}(y)=\exp \left[-i e \int_{0}^{\infty} d s v \cdot A(y+v s) e^{-\delta s}\right] .
$$

The factor $e^{-\delta s}$ was inserted to ensure that the integral converges for $s \rightarrow \infty$ and one takes $\delta \rightarrow 0$ after evaluating the matrix elements of the operator.
Compute the matrix elements of the operator $S_{v}(0)$ with final state photons

$$
\begin{aligned}
\mathcal{S}_{1}(k) & =\langle k, \varepsilon| S_{v}(0)|0\rangle \\
\mathcal{S}_{2}\left(k_{1}, k_{2}\right) & =\left\langle k_{1}, \varepsilon_{1} ; k_{2}, \varepsilon_{2}\right| S_{v}(0)|0\rangle
\end{aligned}
$$

and show that the results are identical to the one obtained in the previous exercise if $v^{\mu} \propto p^{\mu}$, i.e. if the reference vector v^{μ} is chosen along the direction of the electron momentum.
3. Derive the momentum-space Feynman rules for the interaction terms in the EulerHeisenberg Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{c_{1}}{m_{e}^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\frac{c_{2}}{m_{e}^{4}} F_{\mu \nu} F^{\nu \rho} F_{\rho \sigma} F^{\sigma \mu}+\mathcal{O}\left(\frac{E_{\gamma}^{6}}{m_{e}^{6}}\right) .
$$

It suffices to consider the term proportional to c_{1}. In principle, one should symmetrize the Feynman rule in the external lines, but for the purpose of the exercise, is good enough to give a result without symmetrization.
4. Using power-counting arguments, we showed in the lecture that the $\gamma \gamma \rightarrow \gamma \gamma$ cross section is suppressed by $\alpha^{4} E_{\gamma}^{6} / m_{e}^{8}$ at low photon energies. What is the relevant suppression factor for the $\gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ process?

