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July 4, 2012, Higgs at ATLAS and CMS
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July 4, 2012, Higgs at ATLAS and CMS
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Kyoto, November 2012

According to CMS,

MH = 125.8 ± 0.4(stat) ± 0.5(syst) GeV,

According to ATLAS,

MH = 126.0 ± 0.4(stat) ± 0.4(syst) GeV.

MH = 125.2 ± 0.3(stat) ± 0.6(syst) GeV.
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Kyoto, November 2012

According to CMS,

MH = 125.8 ± 0.4(stat) ± 0.5(syst) GeV,

According to ATLAS,

MH = 126.0 ± 0.4(stat) ± 0.4(syst) GeV.

MH = 125.2 ± 0.3(stat) ± 0.6(syst) GeV.

Suppose that this is indeed the Higgs

boson of the SM. What does it mean for

high energy physics?
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Possible answer

There is no new energy scale between the Fermi and Planck

scales

Electroweak scale is determined by Planck physics

New physics responsible for dark matter, baryon asymmetry of the

universe and neutrino masses is hidden below the Fermi scale
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Outline

What did we know about the Higgs boson mass before its

discovery?

Higgs mass from asymptotically safe SM+gravity

New physics between the Fermi and Planck scales?

Higgs mass from inflation

New physics below the Fermi scale

Conclusions
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Self-consistency of the SM

Within the SM the mass of the Higgs boson is an arbitrary parameter

which can have any value (if all other parameters are fixed) from

mmeta ≃ 111 GeV (metastability bound)

to

mLandau ≃ 1 TeV (triviality bound)
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Triviality bound

L. Maiani, G. Parisi and R. Petronzio ’77; Lindner ’85; T. Hambye and

K. Riesselmann ’96;...

The Higgs boson self-coupling has a Landau pole at some energy

determined by the Higgs mass. For MH ≃ mLandau ≃ 1 TeV the

position of this pole is close to the electroweak scale.

strong coupling

Higgs mass 1 TeV ≃ M1 > M2 > M3 ≃ 175 GeV

Μ

ΛHΜL

Fermi Planck
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Triviality bound

If mH < mmax ≃ 175 GeV the Landau pole appears at energies

higher than the Planck scale E > MP .

LHC: The Standard Model is weakly coupled all the way up to the

Planck scale
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Metastability bound

Krasnikov ’78, Hung ’79; Politzer and Wolfram ’79; Altarelli and Isidori

’94; Casas, Espinosa and Quiros ’94,’96;...; Ellis, Espinosa, Giudice,

Hoecker, Riotto ’09;...

φ

V

tunneling

The life-time of our vacuum is

smaller than the age of the Uni-

verse if mH < mmeta, with

mmeta ≃ 111 GeV Espinosa,

Giudice, Riotto ’07
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Metastability bound

If the Higgs mass happened to be smaller than mmeta ≃ 111 GeV, we

would be forced to conclude that there must be some new physics

beyond the SM, which stabilizes the SM vacuum.

However, already since LEP we know

that mH > mmeta so that new physics is

not needed from this point of view.

LHC: SM is a consistent effective theory
all the way up to the Planck scale!
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Higgs boson mass predictions

Though the Higgs mass cannot be predicted within the Standard

Model, embedding it into larger context may fix MH .

Compilation of 81 predictions, Thomas Schücker (as of November 2,

2010)
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Higgs boson mass predictions

Though the Higgs mass cannot be predicted within the Standard

Model, embedding it into larger context may fix MH .

Compilation of 81 predictions, Thomas Schücker (as of November 2,

2010)

The most precise prediction: mH = 161.8033989 by El Naschie

The highest number of predictions by one person (Gogoladze): 12

No predictions in intervals:

600 − 739, 781 − 1800, 2000 − 1018 GeV
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Bayesian approach

(as of November 2, 2010)
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Bayesian “prediction” : mH ≃ 140 GeV
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Extract from M.S., Wetterich ’09:

“Asymptotic safety of gravity and the Higgs boson mass”

“... This results in MH = mcrit = 126 GeV, with only a few GeV

uncertainty...”

Also, the same value is a critical point for Higgs inflation

Bezrukov, M.S., ’09
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Higgs mass from asymptotically
safe gravity
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What if gravity is asymptotically safe?

Asymptotic safety = existence of non-Gaussian UV fixed point for

gravity Weinberg ’79. Though the theory is non-renormalizable, it is

predictive and self-consistent.

Possible consequence: SM + Gravity is a
final theory
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To be true: all the couplings of the SM
must be asymptotically safe or

asymptotically free
Problem for:

U(1) gauge coupling g1, µdg1

dµ
= βSM

1 = 41
96π2

g3
1

Scalar self-coupling λ, µdλ
dµ

= βSM
λ =

=
1

16π2

[

(24λ + 12h2 − 9(g2
2 +

1

3
g2
1))λ − 6h4 +

9

8
g4
2 +

3

8
g4
1 +

3

4
g2
2g

2
1

]

Fermion Yukawa couplings, t-quark in particular h, µdh
dµ

= βSM
h =

=
h

16π2

[

9

2
h2 − 8g2

3 −
9

4
g2
2 −

17

12
g2
1

]

Landau pole behaviour
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Gravity contribution to RG running

Let xj is a SM coupling. Gravity contribution to RG:

µ
dxj

dµ
= βSM

j + βgrav
j .

On dimensional grounds

βgrav
j =

aj

8π

µ2

M2
P (µ)

xj .

where

M2
P (µ) = M2

P + 2ξ0µ
2 ,

with MP = (8πGN)−1/2 = 2.4 × 1018 GeV, ξ0 ≈ 0.024

from a numerical solution of FRGE
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Computations of aj are ambiguous and controversial

Robinson and Wilczek ’05, Pietrykowski ’06, Toms ’07&’08, Ebert,

Plefka and Rodigast ’07, Narain and Percacci ’09, Daum, Harst and

Reuter ’09, Zanusso et al ’09, Folkerts, Litim and Pawlowski ’11, Ellis,

Mavromatos ’12 ...

Many works get for gauge couplings a universal value

a1 = a2 = a3 < 0: U(1) gauge coupling get asymptotically free

in asymptotically safe gravity

aλ ≃ 2.6 > 0 according to Percacci and Narain ’03 for scalar

theory coupled to gravity

ah >< 0 ?? The case ah > 0 is not phenomenologically

acceptable - only massless fermions are admitted
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Suppose that indeed a1 < 0, ah < 0, aλ > 0, what is found in a

number of computations. Then the Higgs mass is predicted to be

coming from solution of equation

λ(MP ) = 0

with uncertainty of few hundreds of MeV. Simultaneously, it is required

that βλ(MP ) ≪ 1.

MP
µ

λ

Landau pole

instability

safe

without
gravity

MZ
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Computation of MH

Definition: “MS benchmark Higgs mass Mcrit" is defined from

equations

λ(µ0) = 0, βSM
λ (µ0) = 0

together with parameter µ0, assuming that all parameters of the SM,

except the Higgs mass, are fixed.
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Most recent computation of Mcrit (Bezrukov et al, May 13, 2012),

incorporating O(ααs) two-loop matching and 3-loop running of

coupling constants (Chetyrkin, Zoller, May 13, 2012)

mcrit = [129.0 +
mt − 172.9

1.1
× 2.2−

αs − 0.1184

0.0007
× 0.56] GeV ,

Theoretical uncertainties: ±1.2 GeV (different sources are summed

quadratically) or ±2.3 GeV (different sources are summed linearly).

Effect of contributions ∝ y4
t , y

2
tλ

2, λ4 (Degrassi et al., May 29, 2012):

shift of the Higgs mass by 100 − 200 MeV. Quadratic theoretical

uncertainty is reduced to ∼ 0.8 GeV.
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To decrease uncertainty: (the LHC accuracy can be as small as 200

MeV!)

Compute remaining two-loop O(α2) corrections to pole - MS

matching for the Higgs mass and top masses. Theoretical

uncertainty can reduced to ∼ 0.5 GeV, due to irremovable

non-perturbative contribution ∼ ΛQCD to top quark mass.

Measure better t-quark mass (present error in mH due to this

uncertainty is ≃ 4 GeV at 2σ level): construct t-quark factory –

e+e− or µ+µ− linear collider with energy ≃ 200 × 200 GeV.

The same conclusion - Alekhin et al, ’12

Measure better αs (present error in mH due to this uncertainty is

≃ 1 GeV at 2σ level)
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Behaviour of the Higgs self-coupling
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New Physics between the Fermi
and Planck scales?
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From two equations

λ(µ0) = 0, βSM
λ (µ0) = 0

one can determine not only the Higgs mass, but also the scale µ0.
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µ0 determined by the EW physics gives
the Planck scale, µ0 ≃ MP !
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Numerical coincidence?

Fermi scale is determined by the Planck

scale (or vice versa)?

This relation is generically spoiled if new

physics exists between the Fermi and

Planck scales.

⇓

Argument in favour of absence of new
physics scales between Fermi and
Planck.
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Higgs mass and inflation
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non-minimal coupling of Higgs field to
gravity

∆S =

∫

d4x
√

−g

{

−
ξh2

2
R

}

Feynman, Brans, Dicke,...

Consider large Higgs fields h.

Gravity strength: Meff
P =

√

M2
P + ξh2 ∝ h

All particle masses are ∝ h

For h > MP

ξ
(classical) physics is the same (MW/Meff

P does not

depend on h)!

Existence of effective flat direction, necessary for successful inflation.
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Formalism: go from Jordan frame to Einstein frame with the use of

conformal transformation:

ĝµν = Ω2gµν , Ω2 = 1 +
ξh2

M2
P

Potential in Einstein frame

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

0

λ v4/4

0 v

R
eh

ea
tin

g

Standard Model
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Inflaton potential and observations

If inflaton potential is known one can make predictions and compare

them with observations.

δT/T at the WMAP normalization scale ∼ 500 Mpc

The value of spectral index ns of scalar density perturbations

〈

δT (x)

T

δT (y)

T

〉

∝

∫

d3k

k3
eik(x−y)kns−1

The amplitude of tensor perturbations r = δρs

δρt

These numbers can be extracted from WMAP observations of cosmic

microwave background. Higgs inflation: one new parameter, ξ =⇒ two

predictions.
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CMB parameters—spectrum and tensor
modes
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Inflation and the Higgs mass

Radiative corrections to inflationary potential: Higgs inflation works

only for λ(MP/
√

(ξ)) > 0 (Bezrukov, MS). Numerically,

MH > Mcrit − 200 MeV. The equality leads to the minimal value of

non-minimal coupling, ξ ≃ 700, what extends the region of weak

coupling of the theory.

MH > Mcrit MH < Mcrit

Fermi Planck Fermi Planck

φ φ

VV
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New Physics below the Fermi
scale
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SM + Gravity and no new physics?

The most conservative hypothesis: we have Standard Model + Gravity

and nothing else.

Ruled out by:

Observations of neutrino oscillations (in the SM neutrinos are

massless and do not oscillate)

Evidence for Dark Matter (SM does not have particle physics

candidate for DM)

No antimatter in the Universe in amounts comparable with matter

(baryon asymmetry of the Universe is too small in the SM)
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the νMSM
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Right-handed neutrinos.
What else?
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the νMSM

Edinburgh, January 10, 2013 – p. 39



the νMSM

Edinburgh, January 10, 2013 – p. 40



SM + Gravity + new physics below the EW scale

The less conservative hypothesis: there are no intermediate energy

scales between the Fermi scale 100 GeV and the Planck scale 1018

GeV.

Role of N1 with mass in keV region: dark matter

Role of N2, N3 with mass in 100 MeV – GeV region: “give” masses to

neutrinos and produce baryon asymmetry of the Universe, all due to

the Higgs boson
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Constraints on DM sterile neutrino N1

Stability. N1 must have a lifetime larger than that of the Universe

Production. N1 are created in the early Universe in reactions

ll̄ → νN1, qq̄ → νN1 etc. We should get correct DM

abundance

Structure formation. If N1 is too light it may have considerable

free streaming length and erase fluctuations on small scales. This

can be checked by the study of Lyman-α forest spectra of distant

quasars and structure of dwarf galaxies

X-rays. N1 decays radiatively, N1 → γν, producing a narrow line

which can be detected by X-ray telescopes (such as Chandra or

XMM-Newton). This line has not been seen yet
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Important: DM sterile neutrino production requires the presence of

large, ∆L/L > 2 × 10−3 lepton asymmetry at temperature

T ∼ 100 MeV. It can only be produced in the νMSM.
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Constraints on BAU sterile neutrinosN2,3

Baryon asymmetry generation: CP-violation in neutrino sector+singlet

fermion oscillations+sphalerons

BAU generation requires out of equilibrium: mixing angle of N2,3

to active neutrinos cannot be too large

Neutrino masses. Mixing angle of N2,3 to active neutrinos cannot

be too small

BBN. Decays of N2,3 must not spoil Big Bang Nucleosynthesis

Experiment. N2,3 have not been seen yet
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Constraints on U2 coming from the baryon asymmetry of the Universe,

from the see-saw formula, from the big bang nucleosynthesis and

experimental searches. Left panel - normal hierarchy, right panel -

inverted hierarchy. Canetti et al.
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Crucial tests and
experiments
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Experiments, which will be done anyway

Crucial experimental test - the LHC. The νMSM prediction - no
deviations from the SM (Perhaps, LHCb upgrade to search for N?)

WIMP searches: no WIMPS in the νMSM

Unitarity of PMNS neutrino mixing matrix:
θ13, θ23 − π/4, type of neutrino mass hierarchy, Dirac
CP-violating phase

Absolute neutrino mass. The νMSM prediction: m1<∼10−5 eV
(from DM). Then m2 ≃ 5 · 10−2eV, m3 ≃ 9 · 10−3eV or
m2,3 ≃ 5 · 10−2 eV.
(Double β decay, Bezrukov)
Normal hierarchy: 1.3 meV < mββ < 3.4 meV

Inverted hierarchy: 13 meV < mββ < 50 meV

Crucial cosmological test - precise measurements of cosmological
parameters ns, r, ∆ns ≃ 0.004
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New dedicated experiments
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High energy frontier

Construction of t-quark factory – e+e− or µ+µ− linear collider with

energy ≃ 200 × 200 GeV.

Precise measurement of top and Higgs masses, to elucidate the

relation between the electroweak and Planck scales.
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Search forN1

X-ray telescopes similar to

Chandra or XMM-Newton but

with better energy resolution:

narrow X-ray line from decay

Ne → νγ

One needs:

Improvement of spectral

resolution up to the natural

line width

(∆E/E ∼ 10−3).

FoV ∼ 1◦ (size of a dwarf

galaxies).

Wide energy scan, from

O(100) eV to O(50) keV.
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Search forN2, N3

Challenge - from baryon asymmetry: θ2 . 5 × 10−7
(

GeV
M

)

CERN

SPS is the best existing machine to uncover new physics below the

electroweak scale. For l ∼ 100 m detector.
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Sketch of the proposed section detector of several kilometer total

length; each standard section of length l|| ∼ 100m, height 5 m and

width l⊥ ∼ 5m may operate independently.
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Conclusions

Edinburgh, January 10, 2013 – p. 53



LHC experiments provide a strong evidence that the SM is a

self-consistent effective theory all the way up to the Planck scale.

The case of MH = Mcrit is very peculiar: if this is indeed the

case, this is a strong indication for the absence of new energy

scales between the Fermi and Planck scales

The new physics responsible for neutrino masses, dark matter

and baryon asymmetry of the Universe can be below the Fermi

scale and associated with extension of the SM by 3 Majorana

fermions with masses in keV - GeV region.

There are plenty of experiments which can confirm or reject the

minimal model
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