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ΛUV

ΛIR

∼	 	 scale invariance

hierarchy’s naturalness               fixed point stability

strongly relevant perturbationm2
H

≡

unstable stable marginal
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yij HF̄iFj

1

Λ2
UV

F̄iFjF̄kF� + . . .

Λ2
UV H

†
H

Standard Model up to some 

Hierarchy see-saw

Λ2
UV � 1TeV

☺☺☹
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yij HF̄iFj
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Λ2
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Λ2
UV H

†
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☺☺☹

m2
H

= �Λ2
UV � Λ2

UV

Tuning!

Standard Model up to some 

Hierarchy see-saw
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yij HF̄iFj
1

Λ2
UV

F̄iFjF̄kF� + . . .Λ2
UV H

†
H

☺ ☺ ☹

Natural SM : Λ2
UV

<∼ 1TeV
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Un-natural SM 

The Higgs boson  really is * The SM Higgs boson*
Flavor and approx B & L are theoretically appealing 

... and experimentally boring

How would one understand the apparent tuning?

• Anthropic selection

• There is more than Effective Field Theory

• Intelligent design
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Natural SM

Supersymmetry Compositeness

m
2
H

†
H

m2 = 0 enhanced UV
 symmetry

new states at
gWvF ∼ 100GeV

dim (H†
H) ≥ 4

m2 �= 0
vF �= 0

new states at
4πvF ∼ 2TeV

dimensional
transmutation

In both cases, must use ingenuity to satisfy flavor and EW constraints
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Collider data display no signal of compositeness
for quarks, leptons and transversely polarized vector bosons

Plausible scenario
E

TeV

q, �, γ,WT , ZT , gW±
L , Z0

L, . . .

‘Higgs’ dynamics

new dynamicsΛUV
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Need
to filter out unwanted 
effects and produce a 
realistic Flavor story  

Scale ( conformal ) invariant
theories are thus an essential 
ingredient  of  model building

TeV

ΛUV

‘Higgs’ dynamics

ΛUV � TeV
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TeV

ΛUV

‘Higgs’ dynamics

?
80’s :      

       Holographic CFTs

  asymptotically free gauge theory 
(Technicolor)

(Randall-Sundrum)2000’s : 

       ‘Abstract CFT’

chracterized by • symmetry
• operator content 
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The structure underlying the Higgs sector

Mass

TeV

W±
L , ZL, h

H =

�
h1 + ih2

h + ih3

�

100 GeV

must be a pseudo-Golstone multiplet

Georgi, Kaplan ’84
Banks ‘84 

Arkani-Hamed, Cohen, Katz, Nelson ’02
Agashe, Contino, Pomarol ‘04
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Simplest options compatible with ρ � 1

SO(5)/SO(4)

SO(6)/SO(5)

SO(6)/SO(4)× U(1)

SO(4, 1)/SO(4) H

H

H ⊕ η

H1 ⊕H2
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Composite sector is broadly described by:

✦  one coupling gρ

✦  one mass scale

gρ ∼ gKK gρ ∼ 4π√
N

mρ (of order TeV)

=
g2ρ
m2

ρ

Ψ̄ΨΨ̄Ψ= gρ Ψ̄ΨΦ

Giudice, Grojean, Pomarol, RR, 2007

✦  decay constant f ∼ mρ

gρ
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strongly coupled
Higgs sector

SM matter
&

gauge fields

Origin of Higgs potential

global symmetry weakly broken

V (h) =
m4

ρ

g2ρ
× λ2

t

16π2
× F (h/f)

∼ λ2
t

16π2
m

2
ρ H

†
H +

g
2
ρ

16π2
λ2
t (H

†
H)2 + · · ·
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EW precision
observables O ∼ v2

f2
× OTechniColor

Vacuum 
dynamics

v = 0 v = f

unbroken SU(2)L × U(1) maximally broken

V ∝ F (h/f) generically v2

f2
= O(1)

16Thursday, January 10, 2013



simply tune v2

f2
∼ 0.05÷ 0.1

be clever : Little Higgs

EW precision
observables O ∼ v2

f2
× OTechniColor

Vacuum 
dynamics

v = 0 v = f

unbroken SU(2)L × U(1) maximally broken

V ∝ F (h/f) generically v2

f2
= O(1)

16Thursday, January 10, 2013



EW precision
observables
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dynamics
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f
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v2
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Two Ways to Flavor

Bilinear:   ETC, conformalTC

Linear:   partial compositeness

Dimopoulos, Susskind
Holdom

....
Luty, Okui

D.B. Kaplan
....

Huber
 RS with bulk fermions
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H

q̄

q

dim (H) ≡ dH > 1 dim (q̄qH) = 4 + (dH − 1) > 4

Yukawas are irrelevants
mt hard to produce

question: how close can I push dH  ➔ 1 
without getting back the hierarchy problem?

dim (H)

dim (H†
H)

1.0 1.2 1.4 1.6 1.8
d2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
max�D0� max dim for SO�4�, nmax�11

Rattazzi, Rychkov, Tonni, Vichi ’08
Poland, Simmons-Duffin, Vichi ’11

1.4 1.61.21.0 1.8
2.0

3.0

4.0

5.0
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LY ukawa = �iqq
i
LΨ

i
q + �iuu

i
LΨ

i
u + �idd

i
LΨ

i
d

Flavor from partial compositeness

Ψ = composite with dimension ∼ 5

2
�iq, �

i
u, �

i
d = dimensionless

H

Y ij
u ∼ �iq�

j
ug∗

Y ij
d ∼ �iq�

j
d g∗

D.B. Kaplan ’91
....

Huber, Shafi ’00
 RS with bulk fermions

• Hypothesis seems a bit wishful to me, but I see no other option

• Problems of minimal technicolor greatly alleviated, but not eliminated
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ΔF=1  

ΔF=2  

q̄iσµνu
jGµν�iq�

j
ugρ ×

v

m2
ρ

×
g2ρ

16π2

(q̄iγµdj)(q̄lγµd
�)�iq�

j
d�

k
q �

�
d ×

g2ρ
m2

ρ

Flavor transitions controlled by selection rules

21Thursday, January 10, 2013



Bounds   &  an intriguing hint
Keren-Zur, Lodone, Nardecchia, Pappadopulo, RR, Vecchi ‘12

• connection with weak scale not perfect

•Not crazy at all to see deviation in D’s first !

•dn  should be next

tuning

Davidson, Isidori, Uhlig ’07
Csaki, Falkowski, Weiler ’08

�k

CP violation in D decays

mρ >∼
gρ
4π

× (20− 40) TeV

mρ � gρ
4π

× 10 TeV

mρ >∼ 10 TeV

mρ >∼
gρ
4π

× (10− 15) TeV��/�, b → sγ

dn

∆aCP = aKK − aππ = −(0.67± 0.16)%

0.1%
� mh

125GeV

�2
�
10TeV

mρ

�2
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µ → eγ
√
mµme

m2
ρ

µ̄σαβe F
αβ

MEG:  Br(μ → e γ) < 2.4 x 10-12

Partial compositeness clearly cannot be the full story 

Must assume  strong sector possesses some flavor symmetry

Range of 
possibilities

U(1)e x U(1) μ x (1)τ

....

SU(3) x SU(3) x ...

mρ >∼ 150 TeV

Redi, Weiler ’11
Barbieri et al. ’12
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Higgs potential, fine-tuning and expectations at the LHC
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Higgs’s mass versus top-partners’

+ + ...
tL

tR

T T

V (h) =

O(λ2
R)O(λ2

L)

λLλR ∼ λtgT

best option is fully composite SO(5) singlet
λL ∼ λt

λR ∼ gT

V (h) =
m4

T

g2T
× λ2

t

16π2
× F (h/f)

tR
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Higgs’s mass versus top-partners’

+ + ...
tL

tR

T T

V (h) =

O(λ2
R)O(λ2

L)

λLλR ∼ λtgT

best option is fully composite SO(5) singlet
λL ∼ λt

λR ∼ gT

V (h) =
m4

T

g2T
× λ2

t

16π2
× F (h/f)Mrazek et al, ‘11

Pomarol, Riva ’12

tR
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a

b

V =
3λ2

tm
2
T

16π2

�
ah2 + bh4/f2 + . . .

�
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v2/f2 < �

a

b

V =
3λ2

tm
2
T

16π2

�
ah2 + bh4/f2 + . . .

�
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v2/f2 < �

a

b

V =
3λ2

tm
2
T

16π2

�
ah2 + bh4/f2 + . . .

�

mh < 125GeV

Total tuning	 ∼ area  =
�
430GeV

mT

�2

× 4

g2T
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The main test of naturalness is the search for fermionic top partners

but how to proceed?   given we do not have in our hand
a truly compelling and calculable model

how to help our experimental colleagues  to express the 
results of their searches in the light of more interesting

scenarios than, say, a fourth family

Perelstein, Pierce, Peskin ‘03
Contino, Servant ‘08
Mrazek, Wulzer ’10
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Simplified Model Ideology
 in the end model builders mistrust full fledged models

top partners

mass

Ψ

De Simone, Matsedonkyi, RR, Wulzer ’12
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Simplified Model Ideology
 in the end model builders mistrust full fledged models

top partners

mass

Ψ
Focus on
on just ψ

Combining • choice forψquantum numbers
• hypothesis on UV origin of 

• symmetry, selection rules,
   power counting

λt

a handful
of models

a handful
of parameters

De Simone, Matsedonkyi, RR, Wulzer ’12
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Production Decay

b

b̄

W+ W+

t

t̄
W−

d

Ψ5/3 ∈ (
1

2
,
1

2
)Ex.:

Contino, Servant 2008
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constrained by 4th family search b� → Wt
same sign dileptons (trileptons) + b + 3 (2) jets 

λ = 3

λ = 0.3

ξ ≡ v2

f2
= 0.2

Ψ5/3 et Ψ−1/3 ∈ (
1

2
,
1

2
)

c1

M5/3

At 14 TeV with ab-1  ,  one expects a reach of up to 2 TeV  mass
Mrazek, Wulzer ’10
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Effective Lagrangian for a composite light Higgs boson
( + pseudo-Goldstone hypothesis)

Giudice, Grojean, Pomarol, RR, 2007

TeV

W±
L , ZL, h100 GeV

Two leading operators in effective lagrangian
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#
yi

f2
(f̄ifiH) |H|2#

1

2f2
∂µ|H|2∂µ|H|2

a × 2m2
V

v

b × m2
V

v2

ci × mi

v

a � 1− 1

2

v2

f2
< 1

robust consequence
of coset structure

ci � 1 +O(
v2

f2
) < 1

generic but not a theorem

b � 1− 2
v2

f2

∝ mi

f2

New!
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W, Z
h

∆�1 = −3g2 tan θ2W
32π2

(1− a2) ln(mρ/mh)

∆�3 =
g2

96π2
(1− a2) ln(mρ/mh)

(T)

(S)

0.2
0.1

1

v2

f2
= 1− a2

top-partner
loops ∆�1 >∼ 10−3 MΨ < 1 TeV

68�, 95�, 99� CL

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Ε3

Ε1

v2

f2
∼ 0.1÷ 0.2

is tolerable

Barbieri, Bellazzini, Rychkov, Varagnolo 07

33Thursday, January 10, 2013



W, Z
h

∆�1 = −3g2 tan θ2W
32π2

(1− a2) ln(mρ/mh)

∆�3 =
g2

96π2
(1− a2) ln(mρ/mh)

(T)

(S)

0.2
0.1

1

v2

f2
= 1− a2

top-partner
loops ∆�1 >∼ 10−3 MΨ < 1 TeV

68�, 95�, 99� CL

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Ε3

Ε1

v2

f2
∼ 0.1÷ 0.2

is tolerable

Barbieri, Bellazzini, Rychkov, Varagnolo 07

33Thursday, January 10, 2013



vector resonances

W W
ρ

∆�3 ∼ m2
W

m2
ρ

∆�3 < 10−3 mρ > 3TeV

time not ripe to search for them at LHC
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• overall reduction of fermion couplings is mildy favored over SM
• composite Higgs scenario not unfit
• 2HDM definitely unfit:  either                             or ct > 1, cb < 1 ct < 1, cb > 1

Pappadopulo ’13

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

a

c

Χ2SM� Χ
2�2.9

MCHM5: Ξ�0.2
MCHM14: Ξ�0.2

5 14

CMS

0.0 0.5 1.0 1.5 2.0
�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

cd�cΤ
c t

Χ2SM� Χ
2�3.
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�3 �2 �1 0 1
�6

�4

�2

0

2

cg

c Γ

Leff = cg
αs

4π

h

v
GµνG

µν + cγ
α

4π

h

v
FµνF

µν

Alternative lagrangian, associated with new light &  weakly coupled states
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Future perspective on Higgs couplings
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 LHC  3 ab-1 : Single Higgs production

 LHC ab-1 : Double Higgs production
v2

f2
∼ 0.1

Grober, Muhlleitner 2010
Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer 2012

Linear Collider ab-1: single Higgs production 
v2

f2
∼ 0.01

Eupean Strategy Group docs
Crakow talk by Grojean

∆a = 3%

∆cf = 5%

v2

f2
∼ 0.05
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CLIC and beyond the Infinite
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Composite h fails to fully unitarize VV scattering

A(V V → V V ) =
s

v2
(1− a2)

A(V V → hh) =
s

v2
(a2 − b)

=
s

f2

=
s

f2

Goldstone

 LHC ab-1  :  sensitive to v2

f2
>∼ 0.3

CLIC  at 3TeV and  1 ab-1   : v2

f2
>∼ 0.01

Contino, Grojean, Pappadopulo, RR, Thamm in preparation
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versus 

for                                 can test coset structure by cosideringv2

f2
>∼ 0.1

 symmetric coset 
 homogeneous space π → −π unbroken around any point

Processes with odd number of legs are suppressed

Notice: in effective lagrangian non trivial correlation of dim 6 and 8 
operator coefficients
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Precision versus energy frontier

indirect 
and

 semi-direct
sensitive to

1

f2
∼

g2ρ
m2

ρ

HL-LHC             ILC

5%                     1%
factor  2   in f

direct HL-LHC             ILC

13 TeV                 33TeV
factor  2   in  mρ
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The most amazing thing about the Standard Model Higgs boson

Being Elementary and Lonely

• Baryon & Lepton number conservation
• Natural Flavor Conservation (CKM)
• custodial symmetry  

emergent accidents
of effective theory⎨
⎧

⎧

the apparent tuning of its mass parameter

1I

II
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YukawasHiggs mass unwanted effects
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✦Flavor demands a rich spectrum of composite fermion operators,  
with non trivial quantum numbers under color, electroweak and 
flavor symmetry

✦ In UV                           ,   mimicking                                       in SM

✦Bosonic resonances: EW precision data want them  heavy and 
strongly coupled.                               with                as big as possible

✦ Fermionic top partners: Naturalness wants them below 1 TeV, 
while mh = 125 wants them more weakly coupled 

If the scenario of Composite Higgs is realized in Nature it rather clear
the underlying theory must be significantly more complex than a generic 

rescaled version of QCD !!

dim(Ψ) ∼ 5/2 dim(Hq) � 5/2

mρ > 3TeV gρ
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Scherzo

Gauge Invariance and Mass
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�S
�S
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e−

�S

e−

�S

eL eR
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Higgsless Standard Model in AdS4

✤ AdS has 2+1 boundary which is reached in finite coordinate time by lightlike geodesics

t

zz = 0

W
e

W

e

m2
W ∝ α

4π

1

L2

• eaten Goldstone is electron-antielectron two particle state
• theory weakly coupled
• no Higgs boson

ds2 =
L2

z2

�
−dt2 + dx2 + dy2 + dz2

�

Rattazzi, Redi 09
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