The Hierarchy Problem & & Compositeness

Riccardo Rattazzi

The Stardard Model as an Effective Theory with fundamental scale $\Lambda_{UV}^2 \gg 1 \,\text{TeV}$

The Stardard Model as an Effective Theory with fundamental scale $\Lambda_{UV}^2 \gg 1 \text{ TeV}$

 $\mathcal{L}_{SM} = \mathcal{L}_{kin} + gA_{\mu}\bar{F}\gamma_{\mu}F + Y_{ij}\bar{F}_{i}HF_{j} + \lambda(H^{\dagger}H)^{2}$

The Stardard Model as an Effective Theory with fundamental scale $\Lambda_{UV}^2 \gg 1 \,\text{TeV}$

$$\mathcal{L}_{SM} = \mathcal{L}_{kin} + gA_{\mu}\bar{F}\gamma_{\mu}F + Y_{ij}\bar{F}_{i}HF_{j} + \lambda(H^{\dagger}H)^{2}$$

$$+ \frac{b_{ij}}{\Lambda_{UV}} L_i L_j H H$$

+
$$\frac{c_{ijkl}}{\Lambda_{UV}^2} \bar{F}_i F_j \bar{F}_k F_\ell + \frac{c_{ij}}{\Lambda_{UV}} \bar{F}_i \sigma_{\mu\nu} F_j G^{\mu\nu} + \dots$$

+
$$\dots$$

The Stardard Model as an Effective Theory with fundamental scale $\Lambda_{UV}^2 \gg 1 \text{ TeV}$

$$\mathcal{L}_{SM} = \mathcal{L}_{kin} + gA_{\mu}\bar{F}\gamma_{\mu}F + Y_{ij}\bar{F}_{i}HF_{j} + \lambda(H^{\dagger}H)^{2}$$

$$+ \frac{b_{ij}}{\Lambda_{UV}} L_i L_j H H$$

+
$$\frac{c_{ijkl}}{\Lambda_{UV}^2} \bar{F}_i F_j \bar{F}_k F_\ell + \frac{c_{ij}}{\Lambda_{UV}} \bar{F}_i \sigma_{\mu\nu} F_j G^{\mu\nu} + \dots$$

+
$$\dots$$

 $\Lambda_{UV}
ightarrow \infty$ (pointlike limit) nicely accounts for 'what we see'

The Stardard Model as an Effective Theory with fundamental scale $\Lambda_{UV}^2 \gg 1 \,\text{TeV}$

 $+ c\Lambda_{UV}^2 H^{\dagger}H$

 $\mathcal{L}_{SM} = \mathcal{L}_{kin} + gA_{\mu}\bar{F}\gamma_{\mu}F + Y_{ij}\bar{F}_{i}HF_{j} + \lambda(H^{\dagger}H)^{2}$

$$+ \frac{b_{ij}}{\Lambda_{UV}} L_i L_j H H$$

+
$$\frac{c_{ijkl}}{\Lambda_{UV}^2} \bar{F}_i F_j \bar{F}_k F_\ell + \frac{c_{ij}}{\Lambda_{UV}} \bar{F}_i \sigma_{\mu\nu} F_j G^{\mu\nu} + \dots$$

+
$$\dots$$

 $\Lambda_{UV} \to \infty$ (pointlike limit) nicely accounts for 'what we see'

d<4

d=4

d>4

 $m_H^2 \equiv strongly relevant.$ perturbation

TEMPERATURE DIAL

 $|T - T_c| \ll T$

 $m_H^2 \equiv strongly relevant.$ perturbation

 $|T - T_c| \ll T$

picture courtesy of V. Rychkov who stole it anyway

Natural SM :

$$\Lambda^2_{UV} \lesssim 1 \text{ TeV}$$
 $\Lambda^2_{UV} H^{\dagger} H$
 $y_{ij} H \overline{F}_i F_j$
 $\frac{1}{\Lambda^2_{UV}} F_i F_j F_k F_\ell + \dots$
 \checkmark
 \checkmark

Un-natural SM

The Higgs boson really is * The SM Higgs boson* Flavor and approx B & L are theoretically appealing ... and experimentally boring

How would one understand the apparent tuning?

- Anthropic selection
- There is more than Effective Field Theory
- Intelligent design

Un-natural SM

The Higgs boson really is * The SM Higgs boson* Flavor and approx B & L are theoretically appealing

... and experimentally boring

How would one understand the apparent tuning?

- There is more than Effective Field Theory
- Intelligent design

Un-natural SM

The Higgs boson really is * The SM Higgs boson* Flavor and approx B & L are theoretically appealing

... and experimentally boring

How would one understand the apparent tuning?

• Anthropic selection

- There is more than Effective Field Theory
- Intelligent design

Natural SM

In both cases, must use ingenuity to satisfy flavor and EW constraints

Natural SM

In both cases, must use ingenuity to satisfy flavor and EW constraints

Collider data display no signal of compositeness for quarks, leptons and *transversely polarized* vector bosons

Plausible scenario

Need $\Lambda_{UV} \gg \text{TeV}$ to filter out unwanted effects and produce a realistic Flavor story

Scale (conformal) invariant theories are thus an essential ingredient of model building

2000's : 'Higgs' dynamics TeV

80's : asymptotically free gauge theory (Technicolor)

> Holographic CFTs (Randall-Sundrum)

'Abstract CFT'

chracterized by

- symmetry
- operator content

The structure underlying the Higgs sector

$$H = \begin{pmatrix} h_1 + ih_2 \\ h + ih_3 \end{pmatrix}$$

must be a pseudo-Golstone multiplet

Georgi, Kaplan '84 Banks '84 Arkani-Hamed, Cohen, Katz, Nelson '02 Agashe, Contino, Pomarol '04

Simplest options compatible with $\rho \simeq 1$

Composite sector is *broadly* described by:

Giudice, Grojean, Pomarol, RR, 2007

• one mass scale $m_{
ho}$ (of order TeV)

• one coupling
$$g_{\rho} \sim g_{KK}$$
 $g_{\rho} \sim \frac{4\pi}{\sqrt{N}}$

♦ decay constant

$$f \sim \frac{m_{\rho}}{g_{\rho}}$$

Origin of Higgs potential

strongly coupled Higgs sector SM matter & gauge fields

global symmetry weakly broken

$$V(h) = \frac{m_{\rho}^4}{g_{\rho}^2} \times \frac{\lambda_t^2}{16\pi^2} \times F(h/f)$$

~ $\frac{\lambda_t^2}{16\pi^2} m_{\rho}^2 H^{\dagger} H + \frac{g_{\rho}^2}{16\pi^2} \lambda_t^2 (H^{\dagger} H)^2 + \cdots$

Origin of Higgs potential

global symmetry weakly broken

$$V(h) = \frac{m_{\rho}^4}{g_{\rho}^2} \times \frac{\lambda_t^2}{16\pi^2} \times F(h/f)$$

~ $\frac{\lambda_t^2}{16\pi^2} m_{\rho}^2 H^{\dagger} H + \frac{g_{\rho}^2}{16\pi^2} \lambda_t^2 (H^{\dagger} H)^2 + \cdots$

$$V \propto F(h/f)$$
 generically $rac{v^2}{f^2} = O(1)$

EW precision observables

$$\mathcal{O} \sim \frac{v^2}{f^2} \times \mathcal{O}_{\text{TechniColor}}$$

Two Ways to Flavor

Bilinear: ETC, conformalTC

Dimopoulos, Susskind Holdom

> Luty, Okui

Linear: partial compositeness

D.B. Kaplan

.... Huber RS with bulk fermions

- Hypothesis seems a bit wishful to me, but I see no other option
- Problems of minimal technicolor greatly alleviated, but not eliminated

Flavor transitions controlled by selection rules

 $\epsilon^{i}_{q}\epsilon^{j}_{d}\epsilon^{k}_{q}\epsilon^{\ell}_{d} \times \frac{g^{2}_{\rho}}{m^{2}_{\rho}} \quad (\bar{q}^{i}\gamma^{\mu}d^{j})(\bar{q}^{l}\gamma_{\mu}d^{\ell})$

 $\Delta F=1$

 $\epsilon^i_q \epsilon^j_u g_\rho \times \frac{v}{m_\rho^2} \times \frac{g_\rho^2}{16\pi^2} \ \bar{q}^i \sigma_{\mu\nu} u^j G_{\mu\nu}$

Bounds & an intriguing hint

Davidson, Isidori, Uhlig '07 Csaki, Falkowski, Weiler '08

Keren-Zur, Lodone, Nardecchia, Pappadopulo, RR, Vecchi '12

_	ϵ_k	$m_{ ho} \gtrsim 10 { m TeV}$
	$\epsilon'/\epsilon, b \to s\gamma$	$m_{\rho} \gtrsim \frac{g_{\rho}}{4\pi} \times (10 - 15) \text{ TeV}$
	d_n	$m_{\rho} \gtrsim \frac{g_{\rho}}{4\pi} \times (20 - 40) \text{ TeV}$
CP violation in D decays $\Delta a_{CP} = a_{KK} - a_{\pi\pi} = -(0.67 \pm 0.16)\%$		$m_{ ho} \simeq \frac{g_{ ho}}{4\pi} \times 10 \text{ TeV}$

• connection with weak scale not perfect

$$\frac{\text{tuning}}{0.1\% \left(\frac{m_h}{125 \,\text{GeV}}\right)^2 \left(\frac{10 \,\text{TeV}}{m_\rho}\right)^2}$$

- •Not crazy at all to see deviation in D's first !
- $\bullet d_n$ should be next

MEG: Br($\mu \rightarrow e \gamma$) < 2.4 x 10⁻¹² $m_{\rho} \gtrsim 150 \text{ TeV}$

Partial compositeness clearly cannot be the full story Must assume strong sector possesses some flavor symmetry

 $U(1)_{e} x U(1)_{\mu} x (1)_{\tau}$

Range of possibilities

Redi, Weiler '11 Barbieri et al. '12

SU(3) x SU(3) x ...

Higgs potential, fine-tuning and expectations at the LHC

Higgs's mass versus top-partners'

Higgs's mass versus top-partners'

Mrazek et al, '11 Pomarol, Riva '12

$$V = \frac{3\lambda_t^2 m_T^2}{16\pi^2} \left(ah^2 + bh^4 / f^2 + \dots \right)$$

$$V = \frac{3\lambda_t^2 m_T^2}{16\pi^2} \left(ah^2 + bh^4 / f^2 + \dots \right)$$

The main test of naturalness is the search for fermionic top partners

Perelstein, Pierce, Peskin '03 Contino, Servant '08 Mrazek, Wulzer '10

but how to proceed? given we do not have in our hand a truly compelling and calculable model

how to help our experimental colleagues to express the results of their searches in the light of more interesting scenarios than, say, a fourth family

Simplified Model Ideology

in the end model builders mistrust full fledged models

Simplified Model Ideology

in the end model builders mistrust full fledged models

Contino, Servant 2008

 $\Psi_{5/3} \text{ et } \Psi_{-1/3} \in \left(\frac{1}{2}, \frac{1}{2}\right)$ constrained by 4th family search $b' \to Wt$ same sign dileptons (trileptons) + b + 3 (2) jets

At 14 TeV with ab⁻¹, one expects a reach of up to 2 TeV mass Mrazek, Wulzer '10

Effective Lagrangian for a composite light Higgs boson (+ pseudo-Goldstone hypothesis)

Giudice, Grojean, Pomarol, RR, 2007

Two leading operators in effective lagrangian

 $\# \frac{1}{2f^2} \partial_\mu |H|^2 \partial^\mu |H|^2$

 $\# \frac{y_i}{f^2} \left(\bar{f}_i f_i H \right) |H|^2$

$$\Delta \epsilon_1 = -\frac{3g^2 \tan \theta_W^2}{32\pi^2} (1 - a^2) \ln(m_{\rho}/m_h)$$
$$\Delta \epsilon_3 = \frac{g^2}{96\pi^2} (1 - a^2) \ln(m_{\rho}/m_h)$$

Barbieri, Bellazzini, Rychkov, Varagnolo 07

$$\Delta \epsilon_1 = -\frac{3g^2 \tan \theta_W^2}{32\pi^2} (1 - a^2) \ln(m_{\rho}/m_h)$$
$$\Delta \epsilon_3 = \frac{g^2}{96\pi^2} (1 - a^2) \ln(m_{\rho}/m_h)$$

Barbieri, Bellazzini, Rychkov, Varagnolo 07

vector resonances

$$W \longrightarrow W$$

$$\Delta \epsilon_3 \sim \frac{m_W^2}{m_\rho^2}$$

$$\Delta \epsilon_3 < 10^{-3} \qquad m_{\rho} > 3 \,\mathrm{TeV}$$

time not ripe to search for them at LHC

- overall reduction of fermion couplings is mildy favored over SM
- composite Higgs scenario not unfit
- 2HDM definitely unfit: either $c_t > 1$, $c_b < 1$ or $c_t < 1$, $c_b > 1$

Alternative lagrangian, associated with new light & weakly coupled states

$$\mathcal{L}_{eff} = c_g \frac{\alpha_s}{4\pi} \frac{h}{v} G_{\mu\nu} G^{\mu\nu} + c_\gamma \frac{\alpha}{4\pi} \frac{h}{v} F_{\mu\nu} F^{\mu\nu}$$

Future perspective on Higgs couplings

Grober, Muhlleitner 2010 Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer 2012

Linear Collider ab⁻¹: single Higgs production

$$\frac{v^2}{f^2} \sim 0.01$$

CLIC and beyond the Infinite

Composite *h* fails to fully unitarize VV scattering

$$\mathcal{A}(VV \to VV) = \frac{s}{v^2}(1-a^2) \qquad \begin{array}{c} \text{Goldstone} \\ = & \frac{s}{f^2} \\ \mathcal{A}(VV \to hh) = \frac{s}{v^2}(a^2-b) \qquad = & \frac{s}{f^2} \end{array}$$

LHC ab⁻¹ : sensitive to
$$\frac{v^2}{f^2} \gtrsim 0.3$$

CLIC at 3TeV and 1 ab^{-1} :

$$\frac{v^2}{f^2} \gtrsim 0.01$$

Contino, Grojean, Pappadopulo, RR, Thamm in preparation

symmetric coset $\pi \to -\pi$ unbroken around any point homogeneous space

Processes with odd number of legs are suppressed

Notice: in effective lagrangian non trivial correlation of dim 6 and 8 operator coefficients

Precision versus energy frontier

The most amazing thing about the Standard Model Higgs boson

Being Elementary and Lonely

- Natural Flavor Conservation (CKM)
- custodial symmetry

emergent accidents of effective theory

- Flavor demands a rich spectrum of composite fermion operators, with non trivial quantum numbers under color, electroweak and flavor symmetry
- In UV $\dim(\Psi) \sim 5/2$, mimicking $\dim(Hq) \simeq 5/2$ in SM
- ♦ Bosonic resonances: EW precision data want them heavy and strongly coupled. $m_{\rho} > 3 \text{ TeV}$ with g_{ρ} as big as possible
- ✦ Fermionic top partners: Naturalness wants them below 1 TeV, while m_h = 125 wants them more weakly coupled

If the scenario of Composite Higgs is realized in Nature it rather clear the underlying theory must be significantly more complex than a generic rescaled version of QCD !!

Scherzo

Gauge Invariance and Mass

Higgsless Standard Model in AdS4

AdS has 2+1 *boundary* which is reached in finite coordinate time by lightlike geodesics

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-dt^{2} + dx^{2} + dy^{2} + dz^{2} \right)$$

$$u = 0$$

$$u = 0$$

$$z = 0$$

$$u = 0$$

$$z = 0$$

$$u = 0$$

$$z = 0$$

$$u = 0$$

$$w = 0$$

$$m_{W}^{2} \propto \frac{\alpha}{4\pi} \frac{1}{L^{2}}$$
Rattazzi, Redi og

- eaten Goldstone is electron-antielectron two particle state
- theory weakly coupled
- no Higgs boson