

Symmetry Breaking and Solitons

Michael Atiyah

Higgs Symposium

9 January, 2013

Dirac Monopole 1931

- Quantization of electric / magnetic charge
- Magnetic monopole is point-singularity
- ► Wave front of electron in background field is section of complex line-bundle L over ℝ³ − 0 ~ S²
- Topological invariant = c₁(L)
- (degree of map $S^1(equator) o U(1)$)

't Hooft - Polyakov Monopole 1974

- SU(2) gauge field on \mathbb{R}^3
- symmetry broken to U(1) by (adjoint) Higgs field ϕ , $|\phi| \rightarrow 1$ at ∞
- Magnetic charge $\mu = c_1(L)$ (L Higgs line-bundle over S^2_{∞})
- (= degree ϕ_{∞} : $S^2(space) \rightarrow S^2$ (Lie algebra))
- Minimum of Energy function (Yang-Mills-Higgs) given by (smooth) soliton solution

Skyrmions 1962

- nucleus modelled by solitions of non-linear field of pions (mass-less, Goldstone bosons)
- $f: \mathbb{R}^3 \to SU(2)$ $f(x) \to 1$ at ∞
- ► deg $f : (\mathbb{R}^3 \cup \infty) \rightarrow S^3(group)$ represents Baryon number $\mathsf{B} = c_2$
- $f = \sigma + i\pi \cdot \tau$ $\pi = (\pi_1, \pi_2, \pi_3)$ pion fields $\tau =$ Pauli matrices $(\sigma^2 + \pi \cdot \tau = 1)$

Relation between monopoles and skyrmions ?

► Manton (1980s) Both are soliton models of particles in ℝ³ (monopoles, baryons) with topologically defined "particle number"

Instantons 1975

- ▶ Solitons of pure Yang-Mills theory in \mathbb{R}^4 : SU(2)
- ► Given by Minimum of Yang-Mills action instanton number *I* = *c*₂
- (a) solutions (with 81 parameters) by ADHM (depends on <u>Penrose</u> twistor theory)
- (b) on general 4-manifolds exploited by <u>Donaldson</u>

Instantons, Monopoles and Skyrmions

Hyperbolic 3-space 1984

 $S^1 - \text{ invariant instantons } \leftrightarrow \text{ monopoles on } H^3_k \\ \text{``weight'' } k \qquad \qquad (\text{curvature } -\frac{1}{k^2})$

•
$$I = 2k\mu$$

(for $k = \frac{1}{2}, I = \mu$)

Massive Pions 2004

 Identify ℝ³ with H³_k by fixing origin and Euclidean length → Hyperbolic length along rays through origin. Use radial gauge

 monopole on H³_k → Skyrmion with massive pions with pion mass m = 2k (exponential decay ~ e^{-mr}) f = exp(φ) Exponentiating Higgs

References

- ▶ 1. Manton and Sutcliffe, Topological Solutions, CUP (2004)
- Atiyah and Sutcliffe, Skyrmions, instantons, mass and curvature, Physics Letters B (605) 106-114 (2005)
- 3. Manton and Sutcliffe, Platonic hyperbolic monopoles [hep-th] 11 July 2012 arXiv:1207-2636
- ► 4. Atiyah, Magnetic monopoles in hyperbolic space, Proc. Bombay Colloquium 1984, OUP(1987) 1-34

ı.

Mass Production

