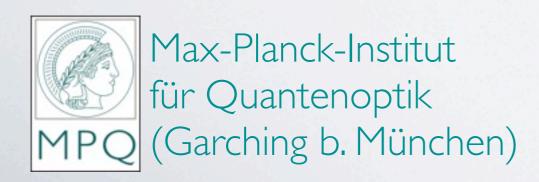
TENSOR NETWORKS FOR STEADY STATES

Jian Cui (Ulm), J. Ignacio Cirac and Mari-Carmen Bañuls (MPQ)

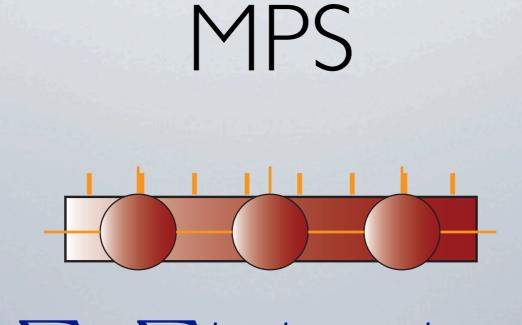
PRL 114, 220601 (2015)



Friday 25 September 15

1

11.9.2015



$|\Psi\rangle = |\Psi\rangle = \operatorname{tr} A_1^{i_1} A_{12\dots i_N}^{i_2} |iA_{N}^{i_N}\rangle |\ddot{u}_N\rangle \dots i_N\rangle$ $i_1\dots i_N i_1\dots i_N$

Two main algorithms:

variational minimization of energy

 \rightarrow approximate ground state as TNS

apply local operators \rightarrow simulate time evolution

imaginary time \rightarrow ground state

BASIC PROBLEMS HAMILTONIAN

find ground states

- produce an ansatz for the state
- \rightarrow variational search

time-dependence \rightarrow real time evolution

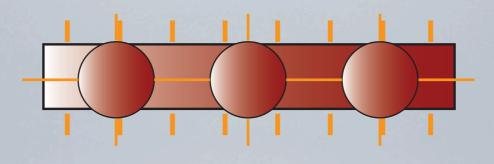
→ imaginary time evolution

typically faster and more precise ution preserves symmetries lution will work for short times

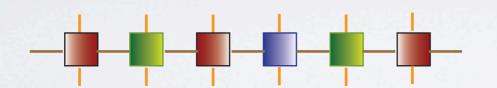
FOR MIXED STATES...

MIXED STATES • MPO = Matrix Product Operator

Same kind of ansatz for operators



 $\hat{M} = \sum_{i_1, j_1, \dots, i_N, j_N} \hat{\mathrm{Tr}}_{i_1 \dots i_N} \hat{\mathrm{Tr}}_{i_2 \dots i_N} \hat{\mathrm{Tr}}_{i_2 \dots i_N} \hat{\mathrm{Tr}}_{i_2 \dots i_N} \hat{\mathrm{Tr}}_{i_1 \dots$



Routinely used for H and U(t)Verstraete et al., PRL 2004

Pirvu et al., NJP 2010



MIXED STATES

• MPDO = Matrix Product Density Operator

purification

need some properties

 $\rho = \sum_{i_1, j_1 \dots i_N, j_N} \operatorname{tr}(M_1^{i_1 j_1} M_2^{i_2 j_2} \dots M_N^{i_N j_N}) |i_1 \dots i_N\rangle \langle j_1 \dots j_N|$ can we impose them *locally*? $\rho = \rho^{\dagger} \qquad \operatorname{tr}\rho = 1 \qquad \rho \ge 0$ in a way $\rho_S = \operatorname{tr}_A |\Psi_{SA}\rangle \langle \Psi_{SA}|$

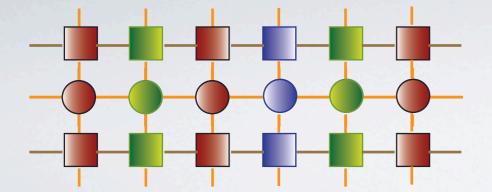
see Werner et al., arXiv:1412.5746

MIXED STATES • MPO = Matrix Product Operator

Similar problems can be attacked

equilibrium \rightarrow thermal states imaginary time evolution

time-dependent \rightarrow real time evolution



unitary $\rho(t) = U(t)\rho(0)U(t)^{\dagger}$ non-unitary $\frac{d\rho(t)}{dt} = \mathcal{L}(\rho)$

> Verstraete et al., PRL 2004 Prosen, Znidaric et al., PRL 2008,...

MPO = Matrix Product Operator

Another possibility for open dynamics

Dissipative real-time dynamics produces a steady state

 $\frac{d\rho(t)}{dt} = \mathcal{L}(\rho) \longrightarrow \mathcal{L}(\rho_S) = 0 \qquad \text{fixed point of} \\ \text{Liouvillian map}$

Approximate it as a MPO

works by García-Ripoll et al., Zwolak, Prosen, ...

MIXED STATES • MPO = Matrix Product Operator

Methods to find steady state simulating long time evolution

analogous to imaginary time evolution

Here: variational method for steady state MPO

analogous to DMRG

works by García-Ripoll et al., Zwolak, Prosen, ...

Applications:

interesting kind of models dissipative QPT dissipative QC collective effects entangled states

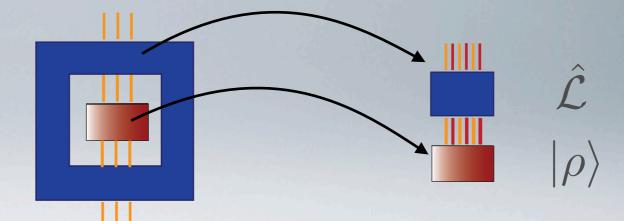
Potential advantages of variational strategy:

faster convergence than time evolution real time evolution needs to be followed (operator) entanglement in the MPO?

METHOD

Dynamics determined by Liouvillian

$$\frac{d\rho}{dt} = \mathcal{L}(\rho)$$



vectorize |
ho
angle superoperator $\hat{\mathcal{L}}$

Search for the null vector

WANTED fixed point of evolution

$$\hat{\mathcal{L}}|\rho
angle=0$$

see also Mascarenhas et al., PRA92, 022116 (2015)

METHOD

Analogy to GS search

Hermitian H

 $\hat{\mathcal{L}}$ non-Hermitian

min λ

 $|\Psi_{\mathrm{GS}}\rangle$

 $egin{aligned} \lambda &= 0 & & \ & e^{\hat{\mathcal{L}}} |
ho_S
angle = |
ho_S
angle & & \ & |
ho_S
angle \end{aligned}$

 $\hat{\mathcal{L}}^{\dagger}\hat{\mathcal{L}}|\underline{\partial}_{S}\emptyset = 0$

lowest eigenvalue

METHOD

Master equation of Lindblad form

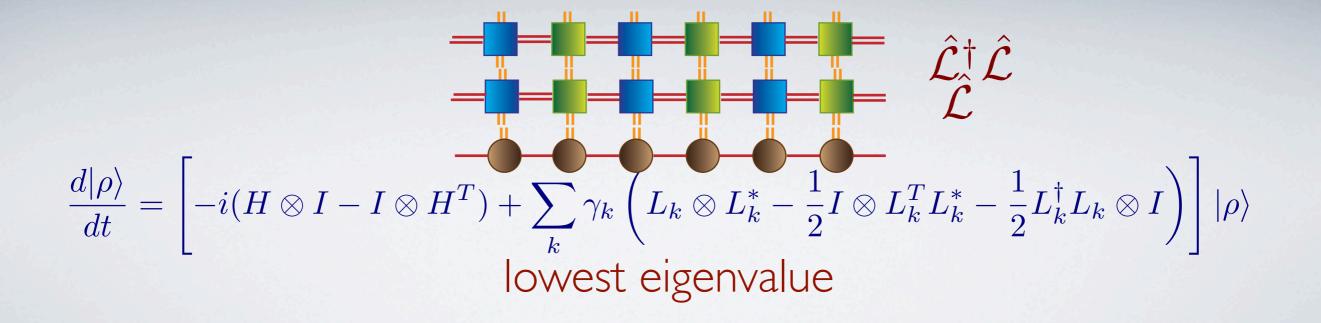
$$\frac{d\rho}{dt} = -i[H,\rho] + \sum_{k} \gamma_{k} \left(L_{k}\rho L_{k}^{\dagger} - \frac{1}{2}\rho L_{k}^{\dagger}L_{k} - \frac{1}{2}L_{k}^{\dagger}L_{k}\rho \right)$$

$$\sim local (MPO) \qquad \qquad \hat{\mathcal{L}} \quad MPO \longrightarrow \hat{\mathcal{L}}^{\dagger}\hat{\mathcal{L}}$$

$$\frac{d|\rho\rangle}{dt} = \left[-i(H \otimes I - I \otimes H^T) + \sum_k \gamma_k \left(L_k \otimes L_k^* - \frac{1}{2}I \otimes L_k^T L_k^* - \frac{1}{2}L_k^{\dagger}L_k \otimes I\right)\right]|\rho\rangle$$

METHOD

Master equation of Lindblad form



POTENTIAL ISSUES

Positivity fixed point of the evolution Accuracy of MPO approximation Degeneracies maybe smaller gaps? \Rightarrow metastable states? local effective Lindblad operator does not preserve any property \Rightarrow symmetries?

Prosen, Znidaric, 2009 Kastoryano, Eisert, 2013

NUMERICAL RESULTS

DICKE MODEL

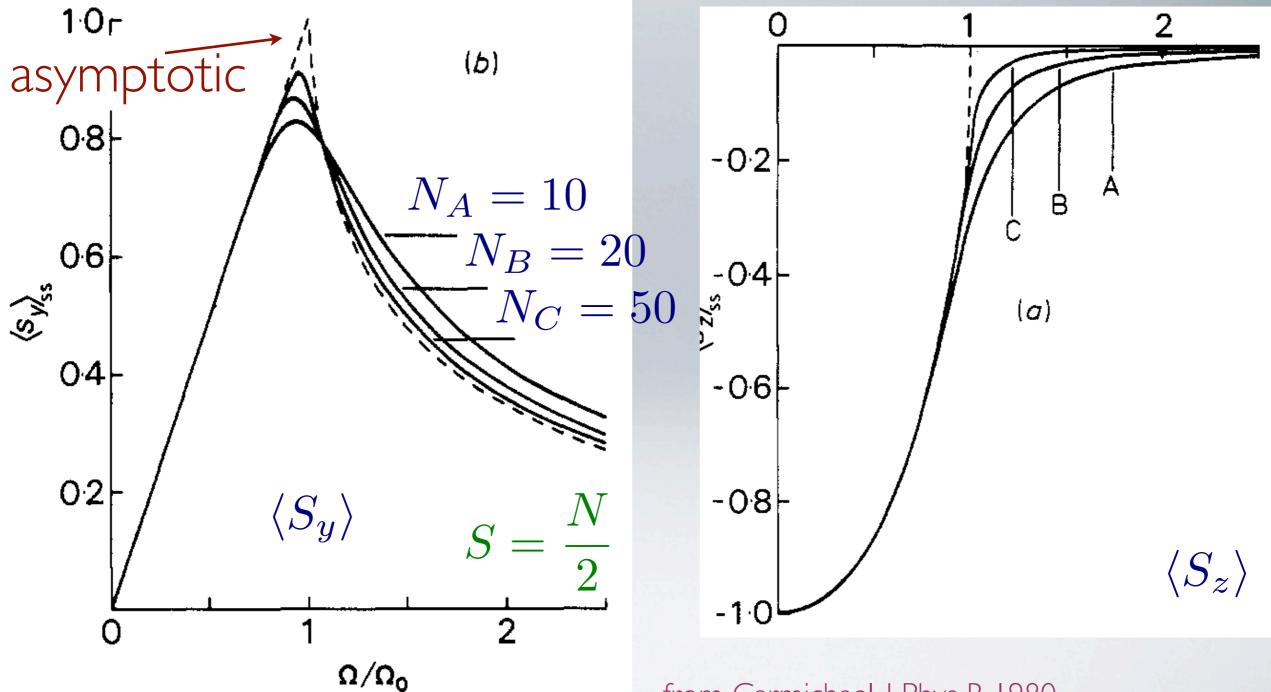
N 2-level atoms coupled to same EM mode

$$\frac{d\rho}{dt} = -i\Omega[S_x,\rho] + \Pi\left(S^+\rho S^+ - \frac{1}{2}\rho S^+S^- - \frac{1}{2}S^+S^-\rho\right)$$
$$S_x = \sum_{n=1}^{N_0} s_x \quad \text{collective coupling}$$

phase transition to superradiant phase $\frac{\Omega}{\Gamma} = \frac{N}{2}$ analytic solution conserved total spin

Dicke, 1954 Hepp, Lieb, 1973 Carmichael, 1980

DICKE MODEL



from Carmichael, J Phys B 1980

DICKE MODEL

is an interesting model... phase transitions dissipative collective phenomena entanglement

but experimentally difficult

Baumann et al., 2010 Hamner et al., 2014 Baden et al., 2014

Do simpler models show similar phenomena?

more local

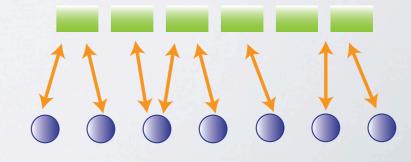
A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

$$\frac{d\rho}{dt} = -i\Omega[S_x,\rho] + \Gamma \sum_n \left(S_n^-{}_{n+1}\rho S_n^+{}_{n+1} - \frac{1}{2}\rho S_n^+{}_{n+1}S_n^-{}_{n+1} - \frac{1}{2}S_n^+{}_{n+1}S_n^-{}_{n+1}\rho \right)$$

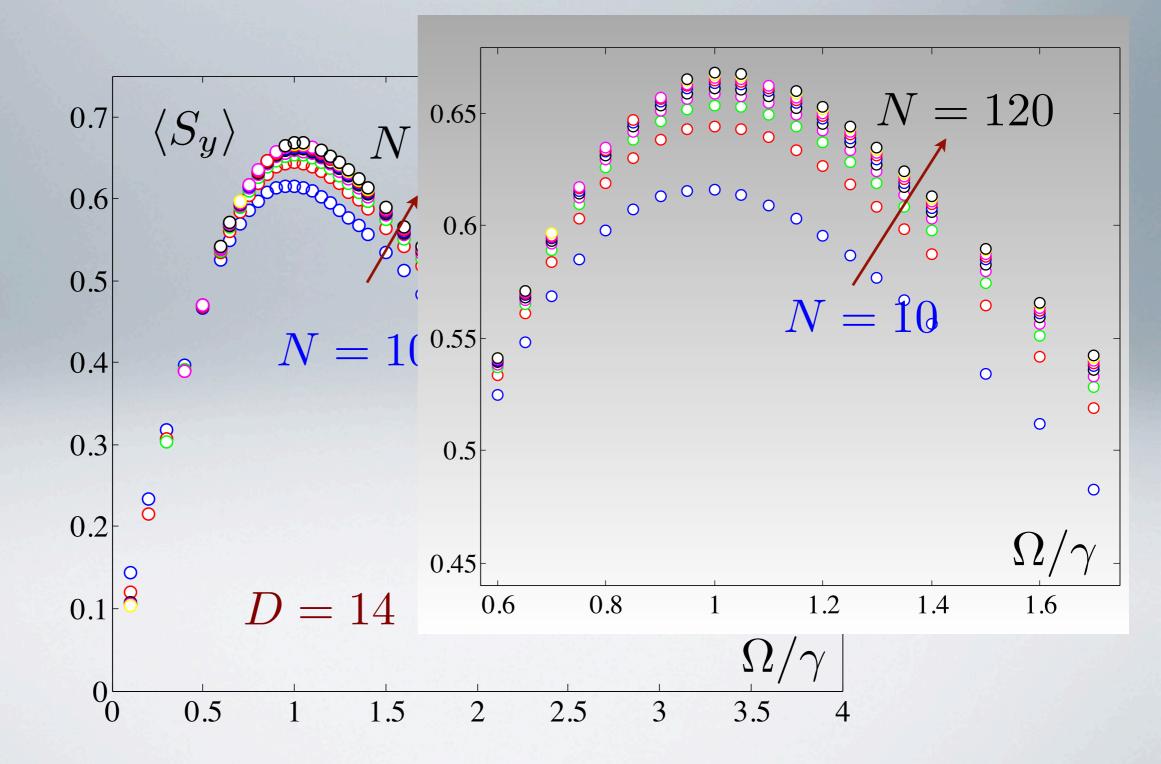
$$S_{n\ n+1}^+ = \sigma_{n+1}^+ \otimes I + I \otimes \sigma_{n+1}^+$$

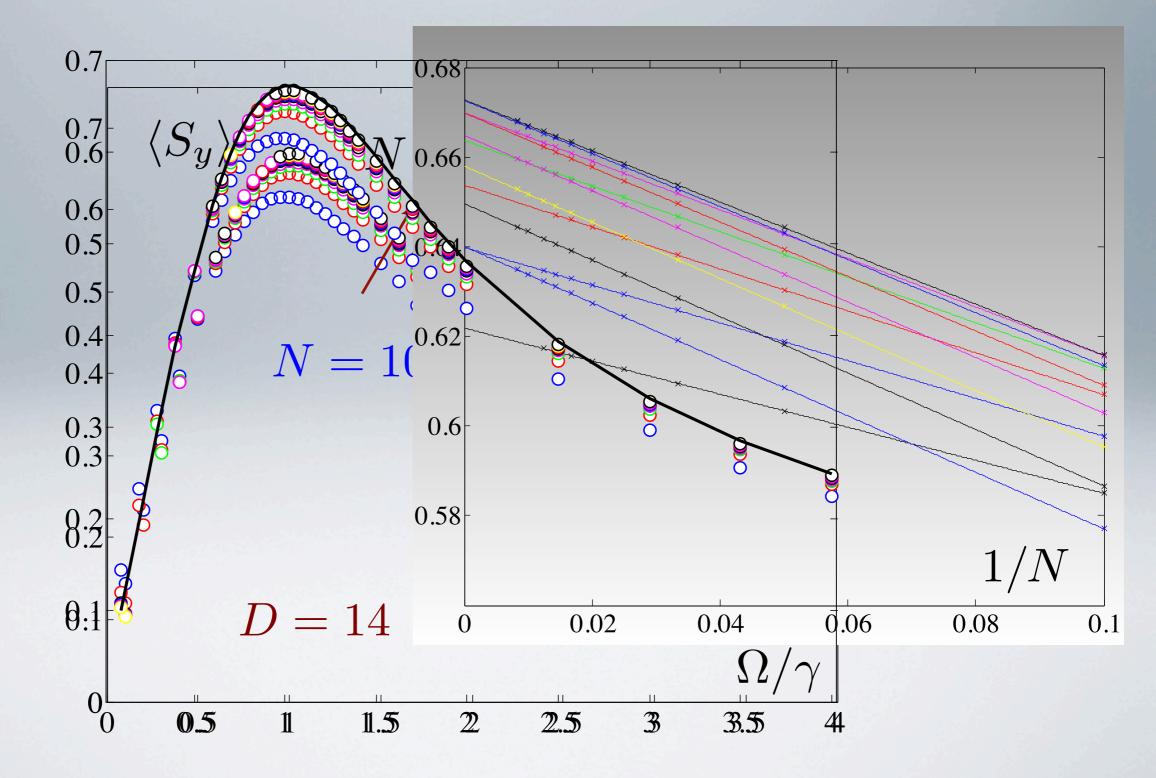


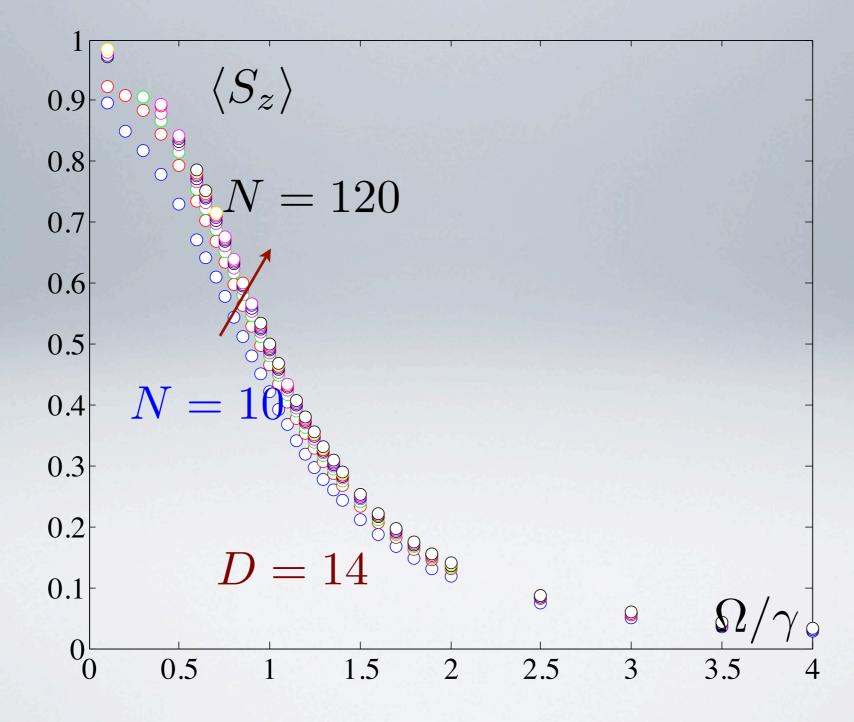
Liouvillian can be expressed as a small MPO of $\chi = 5$

Approximate the steady state by a MPO fixed D → check convergence no explicit positivity no explicit Hermiticity

No special symmetry







$$C_{XX}(1) = \langle S_x^{[i]} S_x^{[i+1]} \rangle - \langle S_x^{[i]} \rangle \langle S_x^{[i+1]} \rangle$$

$$-0.005$$

$$-0.015$$

$$N = 10$$

$$N = 10$$

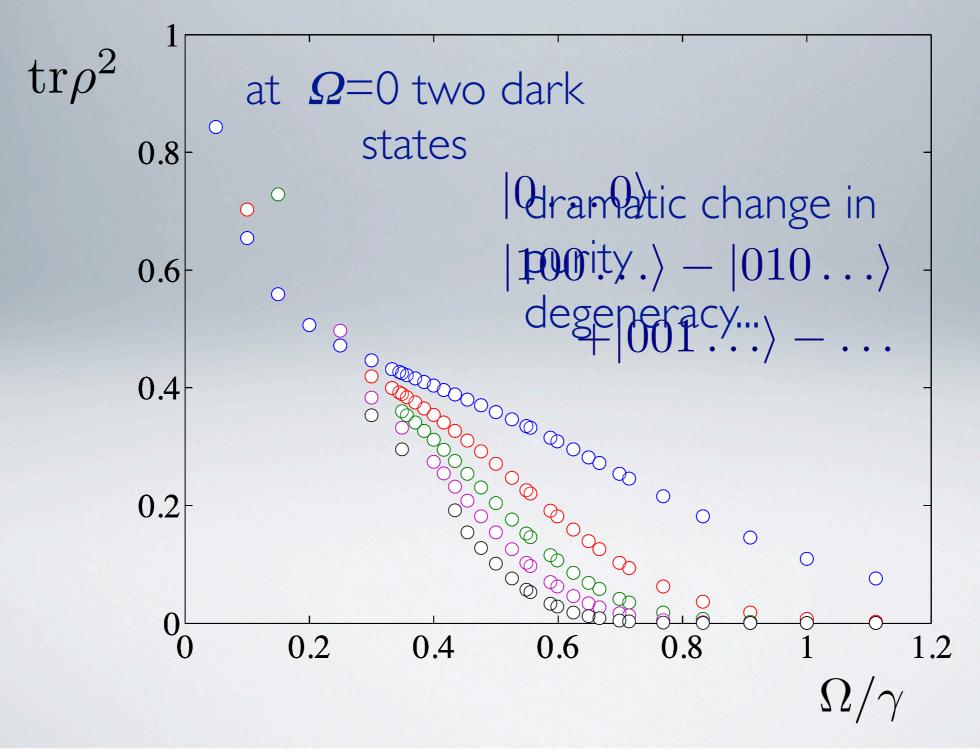
$$N = 120$$

$$N = 120$$

$$0.025$$

$$0.025$$

$$0.05 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4$$



Other interesting models...

DISSIPATIVE ISING CHAIN

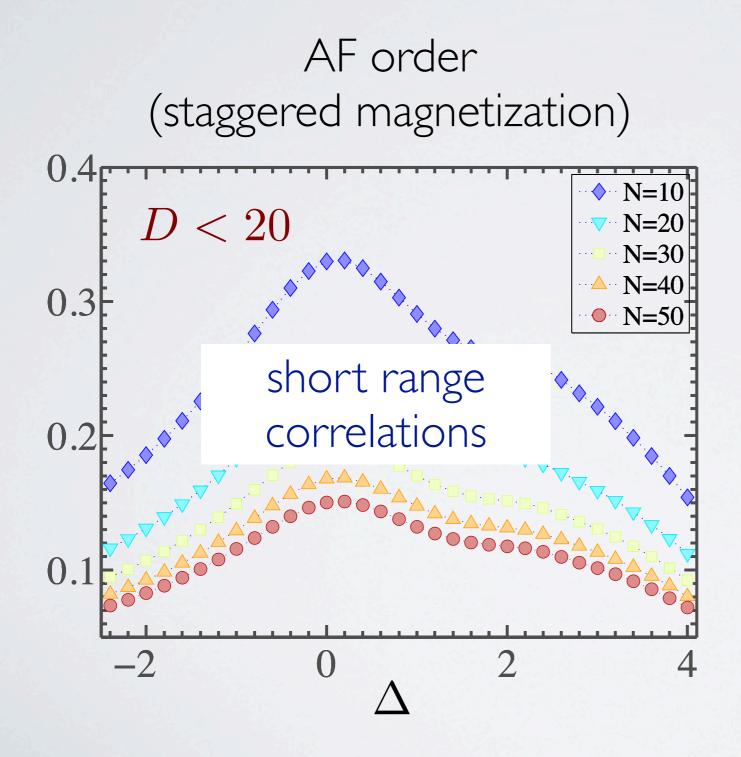
$$H = \sum_{n} H \left[\frac{V}{2} \sigma_{z}^{[n]} \sigma_{z}^{[n[n]]} \sigma_{z}^{[n[n]]} \sigma_{z}^{[n]} \sigma_{z}^{[n]}$$

local dissipation

$$L_n = \sqrt{\gamma} \sigma_n^+$$

can be realized by Rydberg atoms steady state can show AFM ordering

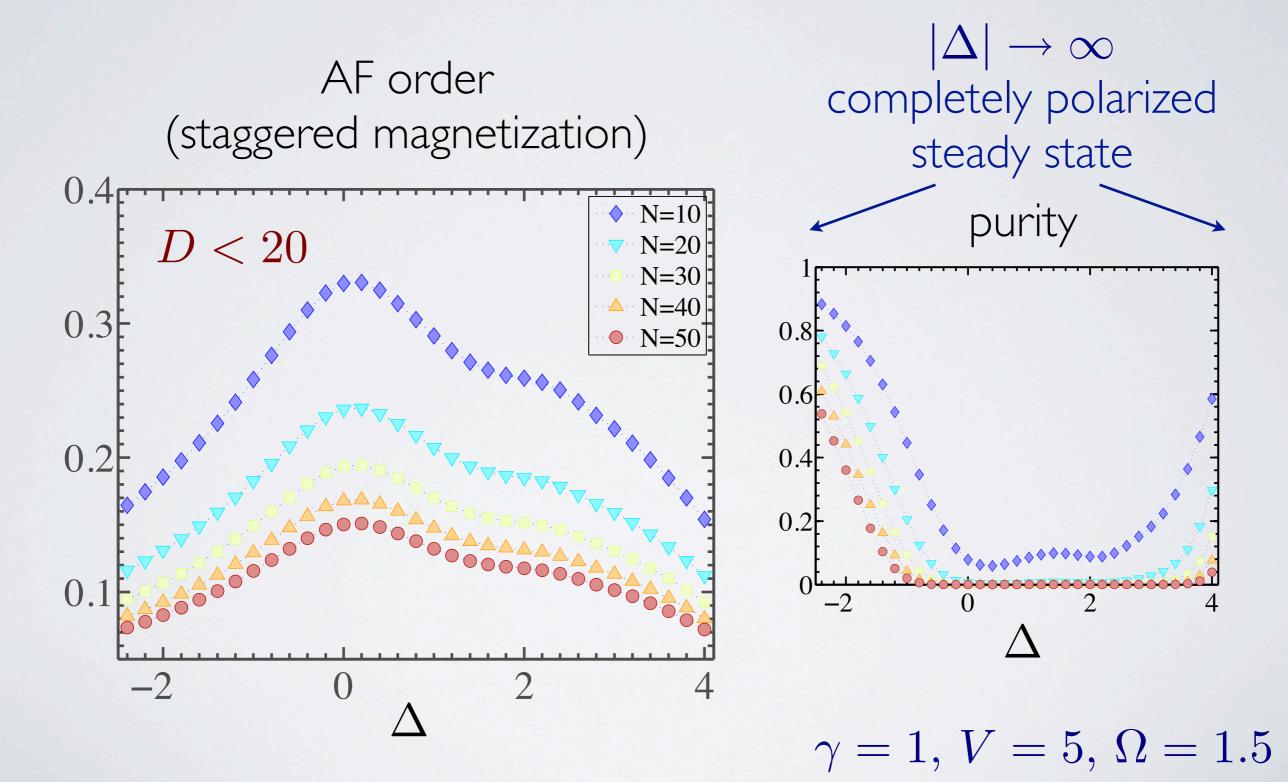
DISSIPATIVE ISING CHAIN



local polarization $\langle \sigma_z^{[n]} \rangle$ $\Delta = -4$ 0.8 $\Delta = 4$ 0.6 $\Delta = 4$ 0.6 $\Delta = 0$ 0.4 2 $\delta = 0$ 10

 $\gamma = 1, V = 5, \Omega = 1.5$

DISSIPATIVE ISING CHAIN



Interesting models...

ISING + COHERENT DISSIPATION

$$H = \sum_{n} \sigma_z^{[n]} \sigma_z^{[n+1]} + \mathbf{g} \sigma_x^{[n]}$$

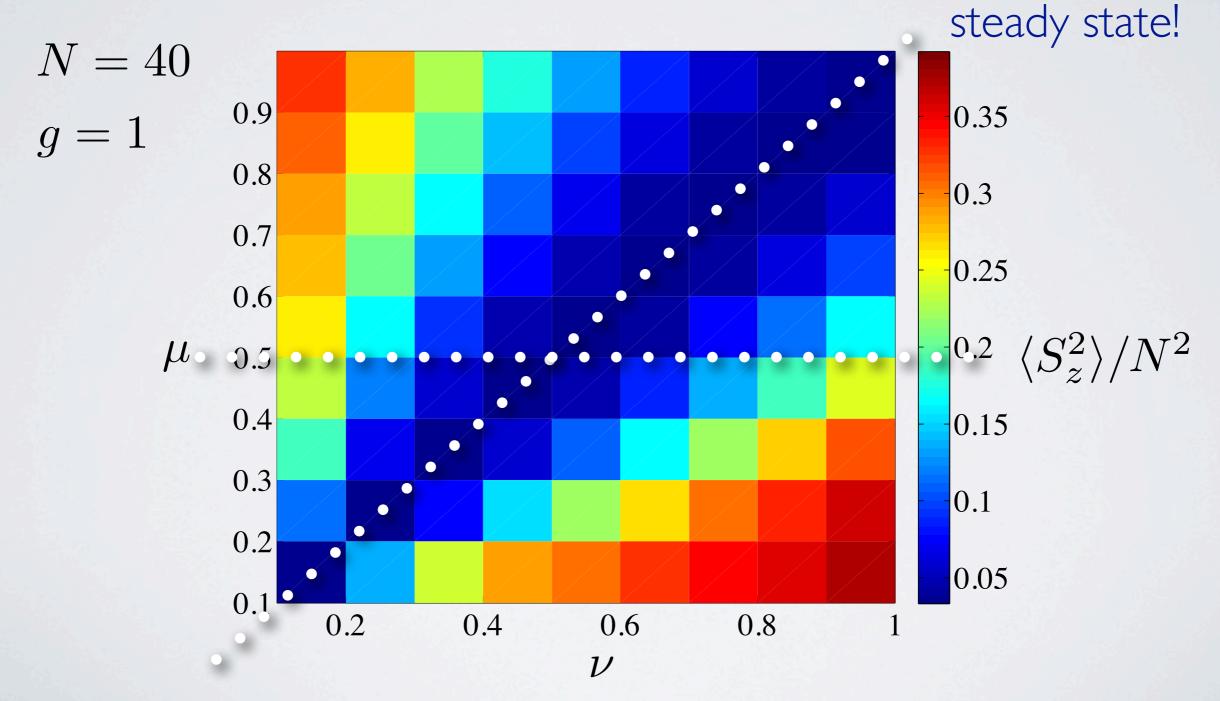
coherent dissipation

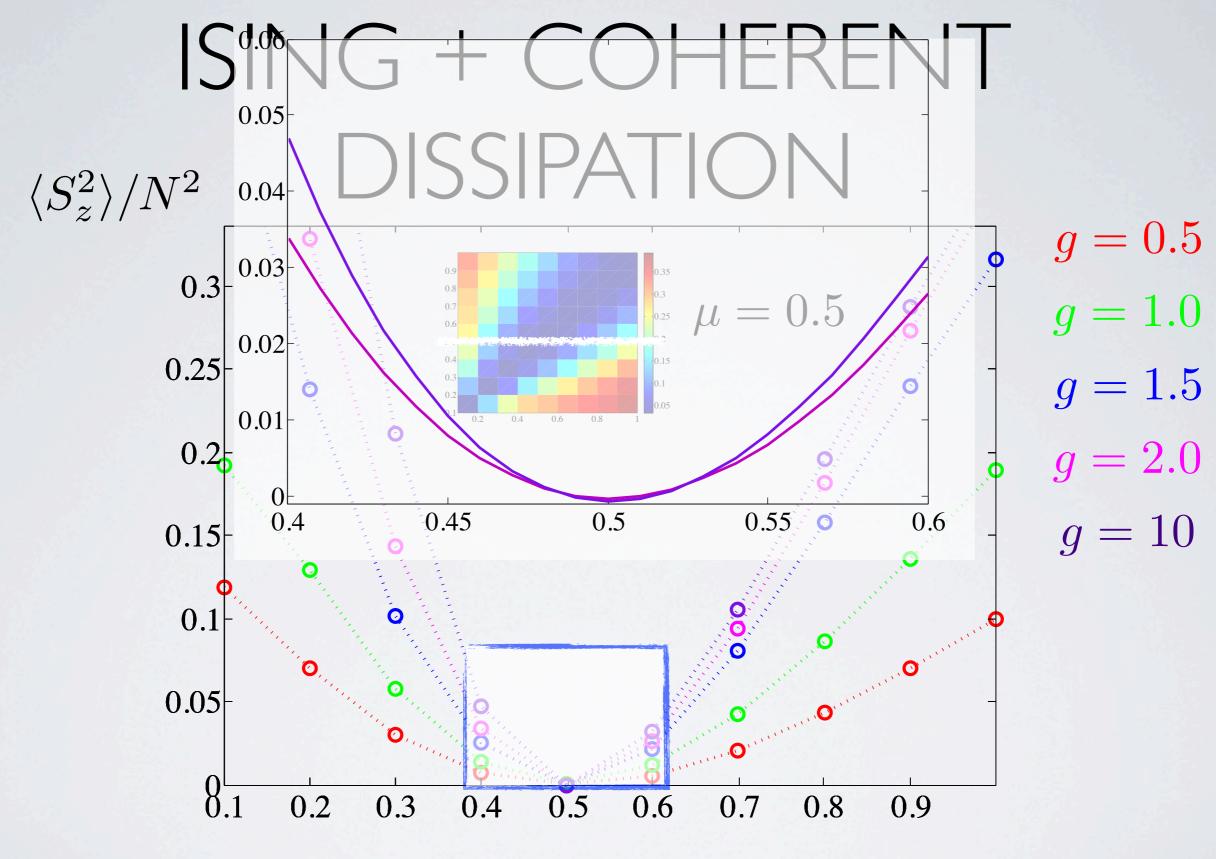
$$L_n = \mu \sigma_n^+ - \nu \sigma_{n+1}^-$$

both Hamiltonian and dissipation can induce coherence

ISING + COHERENT DISSIPATION

at $\mu = \nu$ the identity is a





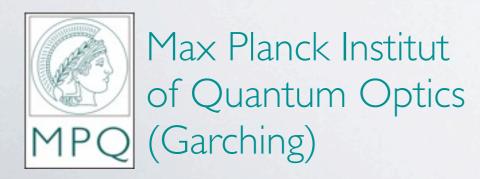
 \mathcal{V}

SUMMARY

NESS can be found variationally Very good convergence (varying models, parameters) Very small bond dimension required Stability can be delicate Warm-up phase needed! Future: symmetries, trace one, degeneracies... much to understand about MPDOs representations

PRL 114, 220601 (2015)

THANKS!



THANKS!