The Higgs Centre for Theoretical Physics

2014 Higgs Symposium – New Horizons in Particle Cosmology 30 June to 2 July

Oliver Buchmueller, Imperial College London

SEARCHES FOR DARK MATTER PRODUCTION AT COLLIDER & DIRECT DETECTION EXPERIMENTS

Fundamental Open Questions in Particle Physics

DM Searches @ collider & Direct Detection O. Buchmüller

. What is the origin of mass?

- Why are the vector bosons Z and W are massive whereas the photon is massless?
- Is there a Higgs boson or even more of them ?

. What is the origin of Dark matter in our Universe ?

- Is a fundamental particle responsible for it?
- Is there a new symmetry in nature?
 - => Does Supersymmetry exist and can it explain DM?

III. What is the origin of the matter-anti-matter

asymmetry in our Universe?

- Does the answer lie in in CP violation?
- Neutrino masses and mixing how do they fit in the picture?

1.5

-0.5

0

0.5

Very Strong Evidence for Dark Matter Today!

Dark Matter Searches

Dark Matter Searches

Dark Matter Searches

Dark Matter Searches at Colliders

The Large Hadron Collider at CERN

The Large Hadron Collider at CERN

The Large Hadron Collider at CERN

+TOTEM

The Large Hadron Collider at CERN

+TOTEM

The Large Hadron Collider at CERN

+TOTEM

In Supersymmetry In Supersymmetry at colliders a famous model ... but only one model) (i.e.

Why is SUSY so attractive?

 $\Delta m_H = f(m_B^2 - m_f^2)$

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

Why is SUSY so attractive?

 $\Delta m_H = f(m_B^2 - m_f^2)$

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

Supersymmetry

Extension of the Standard Model: Introduce a new symmetry Spin ½ matter particles (fermions) ⇔ Spin 1 force carriers (bosons) Standard Model particles SUSY particles

R-parity conservation:

- SUSY particles are produced in pairs
- The lightest SUSY particle (LSP) is stable

- 1 SUSY particles

What do we call a "SUSY search"?

The definition is purely derived from the experimental signature. Therefore, a "SUSY search signature" is characterized by Lots of missing energy, many jets, and possibly leptons in the final state

Missing Energy: • from LSP

<u>Multi-Jet:</u>

• from cascade decay (gaugino)

Multi-Leptons:

from decay of charginos/neutralios

RP-Conserving SUSY is a very prominent example predicting this famous signature but ...

What is its experimental signature?

.. by no means is it the only New Physics model predicting this experimental pattern. Many other NP models predict this genuine signature

Missing Energy:

• Nwimp - end of the cascade

Multi-Jet:

• from decay of the Ns (possibly via heavy SM particles like top, W/Z)

Multi-Leptons:

• from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc but a more generic definition for this signature is as follows.

Inclusive SUSY Searches in 2013

Inclusive SUSY Searches in 2013

Inclusive SUSY Searches in 2013

CMSSM: Evolution with time

Global Fit to indirect and direct constraints on SUSY!

Other "fitter" groups find very similar results: e.g. SuperBayeS: <u>arXiv:1212.2636</u> Fittino group: <u>arXiv:1204.4199</u> X² increase from bluish to reddish

Source:

http://mastercode.web.cern.ch/mastercode/

Observable	Source Th./Ex.	Constraint	$\Delta \chi^2$ (CMSSM)	$\Delta \chi^2$ (NUHM1)	$\Delta \chi^2$ ("SM")
m_t [GeV]	43	173.2 ± 0.90	0.05	0.06	-
$\Delta \alpha_{had}^{(5)}(M_Z)$	42	0.02749 ± 0.00010	0.009	0.004	-
M_Z [GeV]	44	91.1875 ± 0.0021	2.7×10 ⁻⁵	0.26	-
Γ_Z [GeV]	26 / 44	$2.4952 \pm 0.0023 \pm 0.001_{SUSY}$	0.078	0.047	0.14
σ_{had}^{o} [nb]	26 / 44	41.540 ± 0.037	2.50	2.57	2.54
R_l	26 / 44	20.767 ± 0.025	1.05	1.08	1.08
$A_{\rm fb}(\ell)$	26 / 44	0.01714 ± 0.00095	0.72	0.69	0.81
$A_{\ell}(P_{\tau})$	26 / 44	0.1465 ± 0.0032	0.11	0.13	0.07
Rb	26 / 44	0.21629 ± 0.00066	0.26	0.29	0.27
Re	26 / 44	0.1721 ± 0.0030	0.002	0.002	0.002
$A_{\rm fb}(b)$	26 / 44	0.0992 ± 0.0016	7.17	7.37	6.63
$A_{\rm fb}(c)$	26 / 44	0.0707 ± 0.0035	0.86	0.88	0.80
Ab	26 / 44	0.923 ± 0.020	0.36	0.36	0.35
A _c	25 / 44	0.670 ± 0.027	0.005	0.005	0.005
$A_{\ell}(SLD)$	26 / 44	0.1513 ± 0.0021	3.16	3.03	3.51
$\sin^{-}\theta_{w}(Q_{fb})$	26 / 44	0.2324 ± 0.0012	0.63	0.64	0.59
MW [GeV]	20 / 44	$80.399 \pm 0.023 \pm 0.010 gusy$	1.77	1.39	2.08
$a_{\mu}^{nnr} - a_{\mu}^{om}$	53 / 42,54	$(30.2 \pm 8.8 \pm 2.0_{SUSY}) \times 10^{-10}$	4.35	1.82	11.19 (N/A)
M _h GeV	28 / 55,56	$> 114.4 \pm 1.5_{SUSY} $	0.0	0.0	0.0
$BR_{b \rightarrow s\gamma}^{KXV/SM}$	45 / 46	$1.117 \pm 0.076_{EXP}$	1.83	1.09	0.94
		$\pm 0.082_{SM} \pm 0.050_{SUSY}$			
$BR(B_s \rightarrow \mu^+ \mu^-)$	29 / 41	CMS & LHCb	0.04	0.44	0.01
$BR_{B \rightarrow \tau \nu}^{KKV/SM}$	29 / 46	$1.43 \pm 0.43_{EXP+TH}$	1.43	1.59	1.00
$BR(B_d \rightarrow \mu^+ \mu^-)$	29 / 46	$< 4.6[\pm 0.01_{SUSY}] \times 10^{-9}$	0.0	0.0	0.0
$BR_{B \rightarrow X_{*} U}^{EXV/SM}$	47 / 46	0.99 ± 0.32	0.02	≪ 0.01	≪ 0.01
$BR_{K \rightarrow \mu\nu}^{EXP/SM}$	29 / 48	$1.008 \pm 0.014_{\rm EXP+TH}$	0.39	0.42	0.33
BR _{K-1} TH	49 / 50	< 4.5	0.0	0.0	0.0
$\Delta M_{B_{\pi}}^{\text{EXP/SM}}$	49 / 51,52	$0.97 \pm 0.01_{EXP} \pm 0.27_{SM}$	0.02	0.02	0.01
	[29] / [46] 51] 52]	$1.00\pm 0.01_{\rm EXP}\pm 0.13_{\rm SM}$	≪ 0.01	0.33	≪ 0.01
$\Delta \epsilon_{\kappa}^{\rm EXP/SM}$	49 / 51.52	$1.08 \pm 0.14_{EXP+TH}$	0.27	0.37	0.33
$\Omega_{CDM}h^2$	31 / 13	$0.1120 \pm 0.0056 \pm 0.012$ susv	8.4×10^{-4}	0.1	N/A
σ_{n}^{31}	25	$(m_{e0}, \sigma_{p}^{SI})$ plane	0.13	0.13	N/A
iets + Br	18 20	(mo, m, c) plane	1.55	2.20	N/A
$H/A_{\cdot}H^{\pm}$	211	$(M_A, \tan\beta)$ plane	0.0	0.0	N/A
Total x ² /d.o.f	All	All	28.8/22	27.3/21	32,7/23 (21,5/22)
p-values			15%	16%	9% (49%)

CMSSM: Evolution with time

SUSY Status – post 7 TeV LHC data

Constrained SUSY models like the CMSSM are severely put under pressure by the LHC limits!

- Experiments define new benchmarks and less complex SUSY models in order to present the interpretation of their searches.
- Aided by the discovery of a Higgs boson, the focus of the experimental search strategy and corresponding interpretation shifts towards other scenarios like "Natural SUSY" (i.e. 3rd generation squark searches).

Interpretation in Simplified Models

SMS: a few interesting features

How to summarize SMS limits?

Approach taken in the 2012 and 2013 Experimental SUSY PDG reviews [OB & Paul De Jong]:

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf http://pdg.lbl.gov/2013/reviews/rpp2013-rev-susy-2-experiment.pdf

Model	Assumption	$m_{ ilde q}$	$m_{ ilde{g}}$
	$m_{ ilde{q}}pprox m_{ ilde{g}}$	1400	1400
CMSSM	all $m_{ ilde{q}}$	-	800
	all $m_{ ilde{g}}$	1300	-
Simplified model $\tilde{g}\tilde{g}$	$m_{ ilde{\chi}_1^0}=0$	-	900
	$m_{ ilde{\chi}_1^0}>300$	-	no limit
Simplified model $\tilde{q}\tilde{q}$	$m_{ ilde{\chi}^0_1}=0$	750	-
	$m_{ ilde{\chi}_1^0} > 250$	no limit	-
Simplified model	$m_{ ilde{\chi}_1^0} = 0, m_{ ilde{q}} pprox m_{ ilde{g}}$	1500	1500
$ ilde{g} ilde{q}, ilde{g}ar{ ilde{q}}$	$m_{ ilde{\chi}_1^0} = 0$, all $m_{ ilde{g}}$	1400	-
	$m_{ ilde{\chi}_1^0}^{\sim 1} = 0, ext{ all } m_{ ilde{q}}$	-	900

This was an appropriate approach for the rather limited amount of inclusive searches and corresponding SMS interpretations available in 2011 (7 TeV).

How to summarize SMS limits?

Approach taken in the 2012 and 2013 Experimental SUSY PDG reviews [OB & Paul De Jong]:

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-susy-2-experiment.pdf http://pdg.lbl.gov/2013/reviews/rpp2013-rev-susy-2-experiment.pdf

This was an appropriate approach for the rather limited amount of inclusive searches and corresponding SMS interpretations available in 2011 (7 TeV).

Direct squark production – chosen limits

Signature: Jets + $E_t^{miss} + H_T$ Limit assumes all 1st & 2nd gen squarks to be mass degenerate or only one light squark!

Signature: 2 b-jets + E_{τ}^{mis}

Signature: 1Lepton + jets + E_{T}^{mis}

Dark Matter Searches at Direct Detection Experiments

Imperial College London

Direct Detection Experimets: Examples

DM Searches @ collider & Direct Detection 0. Buchmüller

Dark Matter Searches: Direct Detection Experiments

Dark Matter Searches: Direct Detection Experiments

)

In Supersymmetry at Colliders and **Direct Detectio** famous model one model) ...but only **.e.**

SUSY & Dark Matter: Evolution with time master

SUSY & Dark Matter: Evolution with time master

What to expected for SUSY?

MasteRcope

What to expected for SUSY?

What to expect for SUSY (pMSSM)

 $m_{\tilde{\chi}_1^0}$ [GeV]

10⁴

What to expect for SUSY (pMSSM)

54

Imperial College

What to expect for SUSY (pMSSM)

SUSY summary:

- ◆ There remains still a lot of unexplored parameter space in SUSY
- \blacklozenge Large regions are within the neutrino noise region
- LHC searches are can probe regions not accesible to DM Direct detection experiments
- Need to better work out complementarity between collider and DD

Beyond Models! eneric Direct Searches fo Dark Matter ING

The Theoretical Landscape of DM Theories

Dark Matter Searches: Direct Detection vs Colliders

Direct Detection Experiments

DM-nucleus scattering

Collider Experiments

- Pair-production of DM
- missing energy signature

Mono-Mania (at the LHC)

Imperial College London

Mono-Mania (at the LHC)

DM Searches @ collider & Direct Detection O. Buchmüller

Imperial College London

Monojet analyses better than direct detection?!

Claim [often made]: For low mass and the entire spin-dependent case monojet limits are stronger than direct detection limits!

Effective Field Theory (EFT) Interpretation

Example of considered operators:

Example of considered operators:

$$O_V = \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma_\mu q)}{\Lambda^2} \quad \text{Vector operator, s-channel}$$

$$O_{AV} = \frac{(\bar{\chi}\gamma_\mu\gamma_5\chi)(\bar{q}\gamma_\mu\gamma_5q)}{\Lambda^2} \quad \text{Axial vector operator}$$
Axial vector operator of EFT

$$\begin{array}{c} q \\ g_{q} \\ g_{q} \\ g_{\chi} \\ \chi \end{array} \bar{\chi}$$

$$O_{AV} =$$

 $= \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)}{\Lambda^{2}}$ Axial vector operator, s-channel

 \overline{a} If the operator (e.g. V or AV) mediator is suitably(!!) heavy it can be integrated out to obtain the effective V or AV contact operator. In this case (and only this case), the contact interaction scale Λ is related to the parameters entering the Lagrangian:

$$\Lambda = \frac{M_{mediator}}{\sqrt{g_q g_\chi}}$$

(relation in the full theory)

collider & Direct Detection O. Buchmüller

0

Validity of Effective Field Theory Limits

Use vector and axial-vector mediators (e.g. Z') as example - scalar are similar in conclusion!

- Compare prediction of FT with EFT in $m_{med} m_{DM}$ plane. Three regions become visible:
- Region I: EFT and FT agree better then 20% ➤ EFT is valid!
- Region II: EFT yields significant weaker limits then FT
 > EFT limits are too conservative!
- Region III: EFT yields significant stronger limits then FT
 ➢ EFT limits are too aggressive!

Validity of Effective Field Theory Limits

Minimal Simplified Dark Matter Model

Dark Matter Limits from Direct Searches: Today

The Vector Case

The Vector Case

Future Projections

Future Projections

Important complementarity of the two experimental approaches will allow good coverage of the relevant parameter space!

Big discovery potential!

Summary

 So far the origin Dark Matter has not revealed itself!
Both the LHC as well as Direct Detection experiments are probing very interesting regions in the parameter space!

- WE need to better work out the complementarity between collider and DD
 - Effective Field Theory is not the answer!
 - Simplified models might be helpful!

The forthcoming data taking campaign of DD experiments as well as the high energy running of the LHC starting 2015 will be our next very (as in very) real chance for discovery!

The story continues ... stay tuned!

Imperial College

Iondon

Outlook: 8 TeV vs 14 TeV

Increase in energy will help a lot! Not just for SUSY...

qq: factor ~1000

Imperial College London

BACKUP

Early SUSY Search Strategy at the LHC

Search Signatures

SUSY-like decay chains range from short to long and simple to very complicated.

All physics objects, MET, jets, leptons, photons, b's taus, tops, W, Z, etc are involved

Comprehensive coverage of all possible signature requires a topology oriented search strategy:

References Analyses

0- leptons	1-lepton	OSDL	SSDL	≥3 leptons	2- photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi- lepton	Di-photon + jet + MET	Photon + lepton + MET

Already in less then two years of operation ATLAS & CMS managed to carry out the full list of these core "SUSY References Analyses"!

Imperial College London

Validity of Effective Field Theory Limits

What those this imply on model-dependences of EFT limits?

This together with the observation that all DM theories for which the EFT is valid must have $m_{med} < \Gamma_{med}$ leads to the conclusion the the EFT only applies to a very (as in VERY) small class of DM models. EFT limits of monojet searches are therefore highly model-depended!

Why is SUSY so attractive?

 $\Delta m_H = f(m_B^2 - m_f^2)$

1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

(Hierarchy or naturalness problem)

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,

The lightest SUSY particle (LSP)

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

Dark Matter from invisible Higgs searches

Dark Matter from invisible Higgs searches

What those this imply on model-dependences of EFT limits?

Look at EFT validity in m_{DM} – coupling* plane!

^{*} Coupling chose such that CMS EFT limit on Λ applies to FT

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is valid

For this we calculate the minimum coupling

$$\sqrt{g_q g_\chi} = m_{med} / \Lambda_{CMS}$$

that the simplified model must have for the EFT limits to apply. This is defined by region I (i.e. better then 20% agreement of FT and EFT).

Look at EFT validity in m_{DM} – coupling* plane!

1. Region in which EFT is valid (20%)

2. Require compatibility with relic density

When exclude the region in which relic abundance is larger then the observed value of $\Omega_{\chi\chi}h^2 = 0.119$ only mediator masses above a few hundred GeV fulfill this.

EFT limits of monojet searches only apply to a very (as in VERY) small class of DM models!

See discussion about equation 3.5 in arXiv:1308.6799 for further details.

What those this imply on model-dependences of EFT limits?

The observation that all DM theories for which the EFT is valid must have m_{med} < Γ_{med} and the small class to models it applies in any case leads to the conclusion the EFT only applies to a very small class of DM models. EFT limits of monojet searches are therefore highly model-depended!

Alternative Interpretation Ansatz: Simplified models

After three years of operation at the LHC the landscape for interpretation of searches has changed dramatically – new superior & modern approaches have replaced in many areas longstanding traditional ones (e.g. SUSY searches)

DM Searches @ collider & Direct Detection 0. Buchmüller

The proposal

The proposal

Buchmüller

Beyond EFT limits: Simplified models

Working out the complementarity between direct DM detection experiments and collider based DM searches!

EFT limits give the impression that monsjet searches outperform direct detection BUT EFT only applies a VERY small class of DM models.

Simplified model limits give a much better Account of the REAL complementarity and thus seem superior for a comparison. Buchmüller

Beyond EFT limits: Simplified models

Working out the complementarity between direct DM detection experiments and collider based DM searches!

EFT limits give the impression that monsjet searches outperform direct detection BUT EFT only applies a VERY small class of DM models.

Simplified model limits give a much better Account of the REAL complementarity and thus seem superior for a comparison.

Monojet and Monophoto (plus E_T^{miss})

Monojet and Monophoto (plus E_T^{miss})

Direct Detection Techniques

Imperial College London

Validity of Effective Field Theory Limits

